Seasonal Predictions of Tropical Cyclones in 2018 using GFDL and NICAM High-Resolution Global Models

<u>Hiro Murakami</u>, M. Nakano, V. Ramaswamy, T. Delworth, S. Kapnick, R. Gudgel, T. Mochizuki, Y. Morioka, and T. Doi

GFDL and JAMSTEC

EGU General Assembly 2019, EGU2019-6081 April 8, 2019

2018 Tropical Cyclone Season

2018 Accumulated Cyclone Energy (ACE) anomaly relative to 1980–2010 mean

- +60% in the Northern Hemisphere
- +27% in the Western North Pacific
- +140% in the Eastern North Pacific

- 1. El Niño (Central Pacific El Niño) Development
- 2. Warmer Subtropical Central Pacific (PMM+)
- 3. Warmer Kuroshio Current Region

Retrospective Seasonal Forecasts

Real-time Seasonal Predictions for 2018

Active 2018 storm season in the Pacific as well as SST anomaly was well predicted even from Feb 2018.

What caused the active storm season in the WNP?

Idealized Seasonal Experiments

Idealized SST-Prescribed Seasonal Prediction

Eastward Shift in Monsoon Trough

A Similar 2018 Summer in the End of 21st Century

Summary

- Seasonal prediction model (GFDL-FLOR) has skill in predicting storm activity in the North Pacific (r=0.8).
- GFDL-FLOR predicted 2018 active storm season even from the February 2018 initial forecasts.
- Subtropical Pacific SST anomaly associated with positive PMM is a primary reason for the active storm season in the North Pacific.
- In the future, TC could be more active in the North Pacific, amplifying the risk of TC damage.

What caused the active storm season in the WNP?

JMA attributes this active typhoons to

- 1. Higher SST in the Western North Pacific
- 2. Intense Monsoon Trough