Prediction, Projection, and Attribution
Study for Tropical Cyclones Using
the High-Resolution GFDL HiFLOR

Coupled Model

Hiro Murakami, G.A. Vecchi, T.L. Delworth, K. Bhatia,
S. Underwood, R. Gudgel, G. Villarini, W. Zhang,
A.T. Wittenberg, W. Anderson, X. Yang, L. Jia, F. Zeng,
K. Paffendorf,

J.-H. Chen, L. Harris, and S.-J Lin

GFDL/Princeton AOS



Topics

Part 1. Model Performance and Future Projections by HiFLOR

* Interannual variations, Murakami et al. (2015, J. Climate)

TC Intensity

e Sensitivities of TCs to 2xC0O2 Vecchi et al. (in revision, Clim. Dyn.)
Bhatia et al. (2018, J. Climate)

Murakami et al. (2017, Nat. Climate Change)

Part 2. Seasonal Prediction of Tropical Cyclones

* Prediction skill for major hurricanes murakami et al. (2015, 2016, J. Climate)

e Attribution Study for the 2017 Murakami et al. (2018, Science)
active major hurricane season

* A new model under development



Topics

Part 1. Model Performance and Future Projections by HiFLOR

* Interannual variations, Murakami et al. (2015, J. Climate)
TC Intensity
e Sensitivities of TCs to 2xC0O2 Vecchi et al. (in revision, Clim. Dyn.)

Bhatia et al. (2018, J. Climate)
Murakami et al. (2017, Nat. Climate Change)



Motivation

* Tropical cyclones (TCs) have large societal and economic
impacts on the United States (and many other countries)

Disaster Type Number of Percent CPl-adjusted Percent of Average Event
Events Frequency Losses Total Loss Cost

($ billions) ($ billions)

Drought 21 12.4 199 19.1 9.5
Flooding 19 11.2 86 8.3 4.5
Freeze 7 4.1 25 2.4 3.6
Severe Storm 65 38.2 143 13.7 2.2

| Tropical Cyclone 34 20.0 530 50.9 15.6 |

Wildfire 12 7.1 26 2.5 2.2
Winter Storm 12 7.1 35 3.4 2.9

Table: Damage cost from U.S. Billion-dollar disaster events (1980-2013)
Smith and Matthes (2015, Natural Hazards)

 About 85% of the total TC damage has been caused by the intense
hurricanes (Saffir-Simpson Categories 4 and 5; hereafter C45)

# C45 Hurricane: Hurricane with lifetime maximum surface wind >60m/s (113kt)




GFDL FLOR: Forecast-oriented Low Ocean Resolution
version of CM2.5

* CM2.5: Fully coupled model with 50km-mesh atmosphere and 0.25° ocean/sea ice
FLOR : Fully coupled model with 50km-mesh atmosphere and 1° ocean/sea ice

* FLOR s a TC-permitting model
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GFDL Coupled Models (FLOR and HiFLOR)
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Atmosphere:50 km, L32 Atmosphere: 25 km, L32
Ocean: 100 km, L50 Ocean: 100 km, L50




SST Restoring Experiments by FLOR and HiFLOR

Murakami et al. (2015, J. Climate)
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Simulated TC Intensity

Murakami et al. (2015, J. Climate)
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* HiFLOR can simulate C45 hurricanes.
e TC structure is reasonably simulated in terms of
Maximum Wind Speed— Mean SLP relationship.



Interannual Variation of North Atlantic Storms
Murakami et al. (2015, J. Climate)

(a) Tropical Cyclone Frequency (>34kt) in the North Atlantic (1971-2012)

=== (bservations

r=0.68 (HiFLOR vs Obs)

r=0.59 (FLOR vs Obs)

1975 1980 1985 1990 1995 2000 2005 2010

1{)c) Categories 4 and 5 (>114kt) Frequency in the North Atlantic (1971-2012

== (Observations It is for the first time that a
g || == HIiFLOR 1| global coupled model could
— FLOR simulate observed
6 1| interannual variation of C45
hurricanes.

r=0.64 (HiFLOR vs Obs)

r=N/A (FLOR vs Obs)




Interannual Variation for Global Ocean Basins
Murakami et al. (2015, J. Climate)

Correlation Coefficients (Observed vs Model, 1971-2012)

Model N.Indian WN.Pacific @ EN.Pacific @ N.Atlantic  S.Indian  S.Pacific

(a) All TSs (>34kt, 1971-2012)

HiFLOR —0.27 +0.35 +0.49 +0.68 +0.38 +0.31
FLOR +0.01 +0.55 +0.41 +0.59 +0.02 +0.23
(b) Hurricanes (>64kt, 1971-2012)

HiFLOR +0.04 +0.17 +0.51 +0.77 +0.51 +0.23
FLOR +0.01 +0.55 +0.27 +0.68 +0.11 +0.02
(c) Categories 4 and 5 (>114kt, 1971-2012)

HiFLOR +0.38 +0.24 +0.31 +0.64 +0.32 +0.18
FLOR N/A N/A N/A N/A N/A N/A

95% Significant

HiFLOR shows higher skill than FLOR in all the ocean basins, except for WNP




Global mean SST (degree)

TC Sensitivities to 2xCO2 (Fully Coupled Simulations)

Vecchi et al. (Climate Dynamics, in revision)
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TC Sensitivities to 2xCO2 (SST Nudging Experiments)

SST Bias in 1990 Cntl

(reference:. HadISST)

Vecchi et al. (Climate Dynamics, in revision)

SST Nudging Experiment

SSTs are nudged to reference SSTs at 5-day time scale
. (Similar to AMIP but still air-sea coupling is allowed at < 5-day scale)
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TC Sensitivities to 2xCO2 (SST Nudging Experiments)

Vecchi et al. (Climate Dynamics, in revision)
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HiFLOR projects increases (or no change) in global mean TC
frequency that is similar to the statistical-dynamical downscaling by

Emanuel et al. (2013, 2015).

e X

&
o 0 o™
ao @ |O
000 ¢

5
% Change in Global TC Frequency

'
[y
2]

% Change in Global TC Frequency

N
s}




Why does HiFLOR project increases in global TCs?

FLOR (0.5° Model) HiFLOR (0.25° Model)
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Large-scale parameter cannot explain the
difference in projected changes in TC
frequency between FLOR and HiFLOR

Vecchi et al. (Climate Dynamics, in revision)

Difference in Variance of 3-10-day vort850
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Increase in synoptic-scale disturbances (i.e., seeds)
may be relevant to the increase in TC frequency in
HiFLOR
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Retrospective Seasonal Prediction by HiFLOR (Major Hurricanes)

Murakami et al. (2016, J. Climate)

Model | HiFLOR

Period | 1980-2015, mainly focus on TC prediction for July—November

Initial | July (Leal Month=0—-4), Ocean is initialized, but atmosphere is not initialized.

Ensemble | 24 Ensemble Members
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HiFLOR shows skillful prediction for major
hurricanes



Real-Time Prediction for the 2017 Summer Season
Murakami et al. (2018, Science)

Observed IVIH Den5|ty Anomaly in 2017 Predicted MH Density Anomaly in 2017
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Observed Storm Tracks in 2017 Example of HiFLOR prediction for the 2017 Summer

(a) Tropical Cyclones in 2017 (July-November)
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HiFLOR could predict the locations of MHs as well as above normal frequency
of MHs a few months in advance for the 2017 summer.
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What caused the active 2017 MH season?

Murakami et al. (2018, Science)

_Observed SST Anomaly in 2017 |

-2 -1.6 -1.2 -0.8 —-0.4 0 0.4 0.8 1.2 1.6 2

A. Moderate La Nina?
B. Warmer Tropical Atlantic?
C. Warmer off the coast of North America?




Idealized Seasonal Predictions

Murakami et al. (2018, Science)

July 15t, 2017 August September  October November Dec
. Free Coupled Model Simulation given the Initial Condition
Real-time .
Predicitons In't.'a_l
Condition
Predicted SST
|dezalized initial

Predicitons Condition

SST is Blighate dieididi&TTi i quesarperd of regional SST

We call this type of experiments as “real-time attribution” because we can examine
causes for active hurricane season even as hurricane season is underway.



Idealized SST-Prescribed Seasonal Prediction
Murakami et al. (2018, Science)

Prescribed SST Anomaly  Predicted Major Hurricane Density Anomaly
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Idealized Prescribed SST Experiments in the Future

Murakami et al. (2018, Science)

RCP4.5

Projected MH Density Anomaly
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More active MH season than the 2017 summer is projected in the future even with the
same spatial patterns of 2017 SST anomaly, resulting in amplifying the risk of MHs.




Which of local SST anomaly or relative SST anomaly is
important for frequency of MHs in the North Atlantic?

MH Frequency and MDR RSSTA and SSTA (July-November)
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Observed number of MHs (gray bars) is correlated with both
tropical Atlantic (10-25°N, 80—-20°W) SST anomaly (SSTA, r=+0.50) and
tropical Atlantic SST relative to tropical mean (30°S-30°N) (RSSTA, r=+0.61)

Murakami et al. (2018, Science)



Which of local SST anomaly or relative SST anomaly is
important for frequency of MHs in the North Atlantic?

(a) SSTA & MH Frequency (Present-day only)
1=0.56 y=>5.06x +3.63
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(a) SSTA & MH Frequency (Present-day & Future)
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Developing a New Coupled Model (SPEAR)

ATMOSPHERE/LAND

OCEAN/ICE

Delworth et al. (in prep)

Towards a Seamless System for Prediction and EArth System Research

“SPEAR”
Seasonal prediction, Regional extremes and
Decadal prediction including hurricanes short term prediction
SPEAR_LO SPEAR_MED SPEAR_HI '
AM4 100 km AM4 50 km 25 km High resolution
(same as CM4) (similar to AM4) nonhydrostatic

'Ts

N L ]

MOMG6 1° ocean, SIS2
(dynamic ocean, mixed layer, or persisted

SSTs) ‘l’

MOMG6 higher resolution ocean
(coastal and small scale processes)




Developing a new coupled model (SPEAR)

Delworth et al. (in prep)
Control, 2010
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I SPEAR model shows smaller SST bias compared with FLOR I




Simulated TCs in SPEAR

BEST2016_1979-2016
NIO=4.9

WNP=

Observations
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Delworth et al. (in prep)

Tropical cyclone statistics

RMSE
FLOR: 0.58
SPEAR_MED: 0.41

Spatial Correlations
FLOR: 0.80
SPEAR_MED: 0.86
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Delworth et al. (in prep)



Summary

Part 1. Model Performance and Future Projections by HiFLOR

e HiFLOR can simulate C45 hurricanes as observed.

 HiFLOR projects an increase in frequency of global tropical
storms, whereas FLOR projects a decrease in global frequency.

* Large-scale parameters do not account for the increase of storms.
But changes in frequency of seeds may be a key for the increase.

Part 2. Seasonal Prediction of Tropical Cyclones

 HiFLOR has potential to predict major hurricanes a few months
in advance.

* The active 2017 major hurricanes were controlled by the
tropical ocean surface warming in the North Atlantic.

* Relative SST anomaly is a key for prediction of major
hurricanes in the near future.

* A new seamless model (SPEAR) is under development.
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Azimuthal Mean of Tangential Wind Speed

Gao et al. submitted

Radius-vertical cross sections of the composite tangential winds

C384 (25-km mesh, HiFLOR)
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Precipitation Biases & Fraction of Deep Convection

Precipitation Biases [mm/day]
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Which of local SST anomaly or relative SST anomaly is
important for frequency of MHs in the North Atlantic?

Observed PDI

PDI estimated from
SSTA

Observed PDI

PDI estimated from
RSSTA

gh index anomalff (1011 m?s~9)

(101 m3579)

Power dissipation index anomg

PDI (Power Dissipation Index = EV3 )

Atlantic tropical cyclone power dissipation index anomalies
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