## <u>Seasonal Forecasts of Category 4 and 5 Hurricanes</u> <u>and Landfalling Tropical Cyclones using a high-</u> <u>resolution GFDL Coupled Climate Model</u>

Hiroyuki Murakami, Gabriel A. Vecchi, Gabriele Villarini, Thomas L. Delworth, Richard Gudgel, Seth Underwood, Xiaosong Yang, and Wei Zhang, and Shian-Jiann Lin

**GFDL/Princeton AOS** 

GFDL HiFLOR Prototype Seasonal Prediction Model
Image: Comparison of the seasonal prediction Model

Image: Comparison of the seasonal prediction Model
Image: Comparison of the seasonal prediction Model

Image: Comparison of the seasonal prediction Model
Image: Comparison of the seasonal prediction Model

Image: Comparison of the seasonal prediction Model
Image: Comparison of the seasonal prediction Model

Image: Comparison of the seasonal prediction Model
Image: Comparison of the seasonal prediction Model

Image: Comparison of the seasonal prediction of

Fig: Clouds from a HiFLOR simulation, showing three hurricanes in the Atlantic and one in West Pacific. (Figure Remik Ziemlinski) Animation available here: <a href="http://www.gfdl.noaa.gov/video/hiflor\_flat\_v7\_aug-dec.mp4">http://www.gfdl.noaa.gov/video/hiflor\_flat\_v7\_aug-dec.mp4</a>

### **Remained Issues for Seasonal Forecast of Tropical Cyclones (TCs)**

1. Prediction of the most intense TCs (e.g., Category 4-5) at seasonal timescale is challenging, but important given the fact that **85%** of total TC damage has been caused by the C45 TCs in US.



2. Seasonal prediction of landfalling TCs is still challenging.

| Authors                | Model                 | Lead<br>Month | Correlation between observed vs<br>predicted landfalling TCs |
|------------------------|-----------------------|---------------|--------------------------------------------------------------|
| Elsner et al. (2006)   | Statistical           | 6             | +0.35 (over US)                                              |
| Kim et al. (2015)      | Statistical-Dynamical | 1             | +0.56 (over New York State)                                  |
| Yan et al. (2015)      | Statistical           | 1             | +0.60 (over US)                                              |
| Murakami et al. (2016) | Statistical-Dynamical | 2-5           | +0.50 (over US)                                              |

# GFDL Coupled Models (FLOR and HiFLOR)

|                  | FLOR                                                                                                       | HiFLOR                                                      |  |
|------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|
| Atmosphere       | AM2.5 (Atmosphere model of CM2.5)                                                                          |                                                             |  |
| Ocean            | MOM4 (Ocean model of CM2.1)                                                                                |                                                             |  |
| Resolution       | Atmosphere : <mark>50 km</mark> , L32<br>Ocean: 100 km, L50                                                | Atmosphere : <mark>25 km</mark> , L32<br>Ocean: 100 km, L50 |  |
| Dynamics         | Hydrostatic, finite difference<br>Dynamical core (Mesinger et al. 1988) with higher-order advection scheme |                                                             |  |
| Convection       | Relaxed Arakawa-Schubert (RAS, Moorthi and Suarez 1992)                                                    |                                                             |  |
| Radiation        | Freidenreich and Ramaswamy<br>(1999) Every 3 hour.                                                         |                                                             |  |
| Land Surface     | Land Dynamics model (LM3; Milly et al. 2014)                                                               |                                                             |  |
| Minor Changes    | "Cubed-sphere" grid (Lin 2004;<br>Putman and Lin 2007)                                                     | C384 Dynamics (CM4 base): terrine filter.                   |  |
| Simulation Speed | <b>16-yr simulation per day</b> using 4000 CPUs                                                            | <b>4-yr simulation per day</b> using 6000<br>CPUs           |  |

#### **Improved Simulation of Tropical Cyclones**



Historical Experiment: SST is restored to observed monthly data at 10-day time scale.

#### Interannual Variation of Tropical Storms and Cat 4-5 hurricanes in the North Atlantic



It is for the first time that a global coupled model reproduces observed interannual variation of C4-5 hurricanes.

### **Motivation and Methodology**

## <u>Motivation</u>

Evaluating retrospective seasonal prediction of TCs (especially for landfalling and C45 TCs in the North Atlantic) by HiFLOR **Methodology** 

| Models             | HiFLOR and FLOR                                                                                                                                                                                |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Period             | 1990–2015, mainly focus on TC prediction for July–November                                                                                                                                     |
| Initial            | July (Leal Month=0), April (Lead Month=3), and January (Lead Month=6)<br>#Ocean is initialized using the Ensemble KF.<br>Atmosphere is not initialized (derived from AMIP). 12 Ensemble Member |
| Observations       | IBTrACS (1990–2014) and Unisis (2015) for TC data,<br>JRA-55 reanalysis (1990–2015) for atmospheric data,<br>HadISST (1990–2015) for SST data                                                  |
| Storm<br>Category  | TC (Tropical Storms, ≥34kt or ≥17m/s),<br>HUR (Hurricanes, ≥64kt or ≥33m/s),<br>C45 (Category 4 and 5 Hurricanes, ≥ 113kt or ≥58m/s)                                                           |
| Storm<br>Detection | HiFLOR (WS≥17.50 m/s, Warm Core≥2.0K, Duration≥36 hours),<br>FLOR (WS≥15.75 m/s, Warm Core≥1.0K, Duration≥36 hours)                                                                            |
| Skill Score        | Correlation, Root-mean-square-error (RMSE), Mean-square-skill-score (MSSS)                                                                                                                     |

#### Skill in Retrospective TC Prediction for Each Intensity Category



#### Skill in Retrospective TC Prediction for Each Intensity Category



#### Skill in Retrospective TC Prediction for ACE and PDI

(North Atlantic, April Initial Forecast (L0))



# ACE (PDI) is defined as an integrated quantity of square (cube) of maximum surface wind velocity throughout the lifetime of tropical cyclones.

$$ACE = \sum_{n=1}^{N} \sum_{t=1}^{T} w_{\max}^{2}(n,t) \quad PDI = \sum_{n=1}^{N} \sum_{t=1}^{T} w_{\max}^{3}(n,t) \quad \begin{array}{l} N: \text{ Total TC genesis number} \\ T: \text{ Life span for each TC} \end{array}$$

# Locations where the models have skill in predicting TC frequency (July Initial (L0))





#### Comparison of Prediction Skill between HiFLOR and FLOR



Better prediction of TC activity by HiFLOR than FLOR is not caused by the better representation of large-scale parameters, but by the better representation of TCs themselves given the same large-scale conditions through an increase in the horizontal resolution.

# **Observed Landfall Ratio over US**



Correlation between R and T is **0.07**. Landfall ratio is irrelevant to the basin total TC frequency.

# What Controls Observed Landfall Ratio?

| Index              | Correlation<br>(Ratio vs Index) |
|--------------------|---------------------------------|
| Nino-3.4 (Jul–Nov) | -0.24                           |
| AMM (Jul–Nov)      | +0.07                           |
| AMO (Jul–Nov)      | +0.19                           |
| NAO (May-June)     | +0.12                           |
| SNAO (Jul–Aug)     | +0.40                           |

Summertime NAO (SNAO) shows the highest correlation with observed landfall ratio.

(a) SLP Regressed onto SNAO index



SNAO is defined as the 2<sup>nd</sup> EOF mode of summertime (July–August) mean sea-level pressure over the extratropical North Atlantic (25–70N, 70W–50E).

Murakami et al. (MWR, in press)

## No Skill in SNAO Prediction



Understanding the mechanism of SNAO and improvement of SNAO prediction is required.

### Summary

•HiFLOR can skilfully predict year-to-year variations in the **intense hurricanes of C45** in the Atlantic a few months in advance (**r=0.7** for forecasts on 1-July, with July-November being peak hurricane season).

•The high-resolution predictions exhibited significant skill in predicting landfalling TCs in the Caribbean (r=0.7) and Continental United States (r=0.5).

•Improvements in seasonal TC prediction between FLOR and HiFLOR principally due to improved simulation of TCs and the TC response to large-scale climate drivers from increased atmospheric resolution.

•Summertime NAO is a key factor for the landfall TC prediction over US.