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Outline

* Review of previous studies on projected future

changes in tropical cyclones (TCs)
e MRIAGCM (20km, version 3.1)

* Projected future changes in TC activity at

regional scale
- North Atlantic
- Western North Pacific

- Central Pacific (near Hawaii)

20-km mesh global model




Review of effect of global warming on TC activity
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Tropical cyclones and climate change
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1. Consistent results (robustness)
Decrease in frequency of global TCs
" Increase 1n frequency of intense TCs

2. Inconsistent results (uncertainty)
" Projected future changes in TC frequency
n a specific ocean basin

Among 13 previous numerical studies, 5 indicated an increase in the WNP,
while 7 reported a decreasing frequency (Murakami and Wang, 2010)

Future changes in regional TC activity remain
uncertain!
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To address regional climate change was one of the most
important topics for the IPCC ARS.




Model Specifications

MRI-AGCM3.1
(developed in 2007; Mizuta et al. 2006)
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Experimental Designs

 Model: MRI AGCM 3.1 (20 km-mesh)
* Projection periods:

Present-day exp. (PD) : 1979-2003 (25 yr)

Future global warmed exp. (GW):  2075-2099 (25 yr)
« Prescribed lower boundary conditions of SST, Sea ice:

PD: Observations (HadISST1)

GW: Future changes in 18 CMIP3 MME (A1B) + observed
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"Relatively larger increase in SST in the Northern Hemisphere than in the Southern Hemisphere.
“The SST increase is the largest in the tropical Central Pacific.



TC Detection Criteria

Based on Oouchi et al. (2006)

Sea level pressure = 2.0 hPa lower than

the surroundings area.

850 hPa Relative volticity = 3.0 <107 /s
850 hPa Maximum wind speed = 10.0 m/s
Warm Core: 1.0 K
Duration =36 hours
Maximum wind speed at 850 hPa should be
greater than the 300 hPa

(to exclude extra-tropical cyclones).



Simulated Global TC Tracks
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TC tracks are well simulated by the PD experiment.



TC density

TC density is defined as the total count of TC passage
for each 2.5 x 2.5 degree grid box at 6-hour interval.

Pro ected Future Changes in TC dens1t
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North Atlantic

Murakami, H., and B. Wang, 2010: Future change of North Atlantic
tropical cyclone tracks: Projection by Z(Hm, mesh global
atmospheric model. J. Climate, 23, 2699-2721.
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TC tracks in North Atlantic
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TC tracks by PD exp is realistic.

Higher TC density in the eastern NA.

- Lower TC density in the western NA.
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What causes this east-west contrast?

Any changes in steering flows?
Any changes in genesis location?
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Steering flows and mean TC translation vectors (Jul - Oct)
Mean TC translatlon vectors (PD)
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TC genesis density (Jul - Oct)
TC genesis density (PD)

* An eastward shift in TC genesis appears to be a major

factor for the TC track shift.

*Why more (less) TC genesis in the eastern (western) NA?

= Genesis Potential Index (GPI) can identify critical
factors for the genesis changes.

*Modified version of Genesis Potential Index (GPI) by Emanuel
and Nolan (2004)
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Each term contribution to the changes in GPI

Relative humidity Potential Intensity
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For the eastern NA, increases in ascending motion and potential intensity
are responsible for the GPI increase.

For the western NA, decrease 1n relative humidity and descending
anomaly are responsible for the GPI decrease.



Implication of the GPI analysis

500 hPa p-velosity (PD, Jul- Oct)
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Smaller SST increase.
However, descending anomaly due to more
active convection at eastern North Atlantic.

Local SST increase relative to mean increase is
important not only for the local TC activity, but also
for the remote TC activity through teleconnection.




Similar projected changes and observed trend by other studies

Murakami and Wang (2010)
(SST=CMIP3 multi model ensemble mean)

Knutson et al. (Nature Geoscience, 2008)
(SST=CMIP3 multi model ensemble mean)
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Summary (North Atlantic)

The projected TC activity change in the North Atlantic (NA)
indicates:

(a) Positions of the prevailing northward recurving TC tracks will
shift eastward over the open ocean of the NA.

(b) TC track changes are primarily owning to the changes in TC-
genesis locations.

(c) A SST change relative to other regions 1s important not only for
local TC activity, but also for inhibiting remote TC activity via
teleconnection.

(d) Similar shifts in TC tracks are also seen 1n other observed trend
and future projection studies.



Western North Pacific

Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western

North Pacific typhoons: Prjections by?ZGﬁni;nesh global
atmospheric model. J. Climate, 24, 1




Projected Future Changes in TC tracks in Western North Pacific
Observatlons (1979 2003) PD (1979 2003)

TC tracks by PD exp is realistic.
"Higher TC density in the eastern WNP.

- Lower TC density in the western WNP.
\ Y N |
What causes this east-west contrast?

Any changes in steering flows?
Any changes in genesis location?
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What causes TC track changes?

Steering flow (850-300hPa) changes

changes in Mass Weighted Flows (m/s) (GW — PD, JASO)
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 Steering flow changes
.. (westerly flow anomaly)
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can explain TC track

> changes by inhibiting
_ e —————————p " 02 .
e westward TC motion.

OE

TC genesis frequency changes

TC genesis location
changes (castward shift)
can also explain TC track
changes.




Genesis potential index

To determine the factors behind such genesis changes,
we used a Genesis Potential Index (GPI) by Emanuel
and Nolan (2004) with some modifications.

Absolute Relative  Maximum Vertical Wind  Vertical p-velocity

Vorticity = Humidity Potential Shear (850- at 500hPa
at 850hPa at 700hPa Intensity = 200hPa)
Future changes in TC )
[ HAns ][ GPI changes
genesis frequency )
Spatial
correlation

coefficient 1s
0.55.

GPI performs reasonably well in reflecting the changes in TC genesis frequency.




Each term contribution to the changes in GPI

Relative humidity

1. Thermodynamic changes
has less influence.
=>Relative humidity and
Potential intensity tend to
cancel each other.
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2. Dynamical changes have great influences. e
=>Vorticity and vertical wind shear contribute to the increase in B
GPI in the eastern WNP. 2
=>Vorticity and vertical wind velocity contribute to the decrease in 3

GPI in the western WNP. |




Weakening of Walker Circulation

CMIP3
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Scaled by global mean surface air temperature warming of each model before averaging.

Vecchi and Soden (2007, J. Climate) documented that CMIP3 models
consistently project weakenmg of Pac1ﬁc Walker Circulation in the future.
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Mechanisms of future changes in TC genesis

Future changes in vertical wind velocity at 500 hPa

Rossby wave response:

. . : . Descending
Positive vorticity => Increase in TC genesis in the eastern
anomaly
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Is the projected eastward shift robust?

CMIP3 models (Yokoi and Takayabu 2009) CMIPS models (Yokoi et al. 2012)
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Summary (western North Pacific)

The projected TC activity change in the western North Pacific (WNP)
indicates:

(a) Inthe same way as NA, positions of the prevailing northward
recurving TC tracks will shift eastward over the open ocean of

the WNP.

(b) TC track changes are partially due to changes of the large scale
steering flows, but primarily owning to the changes in TC-
genesis locations which is related to projected weakening of
Walker circulation.

(¢) The projected shift in TC tracks is robustly projected by different
models under different future scenarios.



Central Pacific (Hawaiian Islands)

Murakami, H., B. Wang, T. L1, and A. Kitoh, 2013:Projected increase in
tropical cyclones near Hawaii. Nat. Climate Change, 3, 749-754.
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Tropical cyclones near Hawaii
Observatiqns(1979—2003) | PD (1979-2003) | GW (2075-2099)
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Present-day climate: 1 tropical cyclone for every 4 year
approaches the Hawaiian Islands

Future climate : 1 tropical cyclone for every 2 year
approaches the Hawaiian Islands




An example of a future projection

Central Pressure: 1008.0 [hPa]
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Steering flow changes (July—October)
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Increases 1n easterly steering flow lead to the westward propagation
of TCs.




Change 1n large-scale flow at 300 hPa (Jul-Oct)
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Projected changes in large-scale variables (JJAS)

(b) Vertical Wind Shear [m s7]
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All variables show significant future changes
that are more favorable for TC activity in the subtropical central Pacific.



Consistency 1n projected increase in TC density
in Central Pacific

A few studies also reported that frequency of TC genesis 1s projected
to increase in the tropical Central Pacific.

/ Projected future change in frequency of TC genesis density \
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(a)

(b)

(c)

(d)

Summary for Central Pacific

Future experiment (2075-2099) projects significant increase in
TC density around the Hawaiian Islands relative to the
present-day (1979-2003).

The substantial increase of the likelihood of TC density 1s
primarily associated with a westward expansion of TC tracks
in the eastern Pacific.

In addition, the significant and robust changes in large-scale
environmental conditions also strengthen in situ TC activity in
the subtropical central Pacific, which also contribute to the
increase of TC frequency of occurrence around the Hawaiian
Islands.

Projected increase in TC density in the Central Pacific appears to
be robust among the different numerical studies.
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Future changes in TC density projected by ensemble
experiments

(a) Ensemble Mean of Future Change in TC density  ymper/25-year
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1. Projected increase in TC density near Hawaii 1s robust
among the ensemble experiments.

2. Projected eastward shifts in TC tracks in the WNP and NA
are robust among the ensemble experiments.

Cross mark indicates statistical significance and robustness among ensemble experiments.



Conclusion

1. MRI model projects significant and robust changes in regional TC
activity in the three ocean basins.

North Atlantic: Eastward shift in TC tracks
Western North Pacific: Eastward shift in TC tracks
Central Pacific: Increase in TC frequency near Hawaii



