Where will typhoons occur more or less in the future?

Hiroyuki Murakami (IPRC/Univ. Hawaii)

Murakami et al. (2011, 2012, J. Climate)

Outline

- Review of previous studies on projected future changes in tropical cyclones (TCs)
- Projected future changes in TC frequency of occurrence in the western North Pacific using a 20-km mesh global model.
- Summary

20-km mesh global model

Review of effect of global warming on TC activity

nature geoscience

REVIEW ARTICLE PUBLISHED ONLINE: 21 FEBRUARY 2010 | DOI: 10.1038/NGE0779 Knutson et al. (2010, *Nat. Geosci.*)

Tropical cyclones and climate change

Thomas R. Knutson^{1*}, John L. McBride², Johnny Chan³, Kerry Emanuel⁴, Greg Holland⁵, Chris Landsea⁶, Isaac Held¹, James P. Kossin⁷, A. K. Srivastava⁸ and Masato Sugi⁹

- 1. Consistent results (consensus)
 - •Reduction in frequency of global TCs
 - Increase in frequency of intense TCs
- 2. Inconsistent results (uncertainty)

 Projected future changes in TC frequency in a specific ocean basin

Among 13 previous numerical studies, 5 indicated an increase in the WNP, while 7 reported a decreasing frequency (Murakami and Wang, 2010)

Regional changes in TC activity remain uncertain!

IPCC Assessment Reports

		CLIMATE CHANGE 1995 The Science of Climate Change Construction of Working Grass In the Neuron Assessment Report of the Telepisenersential Press on Change Change	CLIMATE CHANGE 2001 The Second Care	MATE CURNE 2007 DE SECURIOR E BASIS	Climate Change 2013 İPCC
	FAR 1990 11 Chapters	SAR 1995 11 Chapters	TAR 2001 14 Chapters	AR4 2007 11 Chapters	AR5 2013 14 Chapters
observations	\checkmark	\checkmark	\checkmark	~ ~	~
paleoclimate				\checkmark	\checkmark
sea level	\checkmark	\checkmark	\checkmark		√
clouds			_		✓
carbon cycle			\checkmark		\checkmark
regional change			\checkmark	\checkmark	~

To address regional change is one of the important topics in the IPCC AR5.

Why do we need a high resolution model?

Model Specifications

	(Mizuta et al. 2006)		
Horizontal resolution	TL959 (20km)		
Vertical resolution	60 levels (top at 0.1hPa)		
Time integration	Semi-Lagrangian		
Time step	6minutes		
Cumulus convection	Prognostic Arakara-Schubert		
Cloud	Smith (1990)		
Radiation	Shibata and Aoki (1989)		
	Shibata and Uchiyama(1992)		
GWD	lwasaki et al. (1989)	yr07–09–06 04z	
Land surface	SiB ver0109(Hirai et al.2007)		
Boundary layer	MellorYamada Level2		
Aerosol (direct)	Sulfate aerosol	Alexa I	
Aerosol (indirect)	No		Section of

Time-slice Experiment

Experimental Designs

- Model: MRI AGCM 3.1 (20 km-mesh)
- Projection periods:

 Present-day exp. (PD) :
 1979-2003 (25 yr)

 Future global warmed exp. (GW):
 2075-2099 (25 yr)

• Prescribed Lower Boundary Conditions:

PD: Observations (HadISST)

GW: Ensemble mean of 18 CMIP3 models' SST under the IPCC A1B scenario

Relatively larger increase in SST in the Northern Hemisphere than in the Southern Hemisphere.The SST increase is the largest in the tropical Central Pacific.

TC Detection Criteria

Based on Oouchi et al. (2006)

- Sea level pressure = 2.0 hPa lower than the surroundings area.
- 850 hPa Relative volticity = 3.0×10^{-5} /s
- 850 hPa Maximum wind speed = 10.0 m/s
- Warm Core: 1.0 K
- Duration = 36 hours
- Maximum wind speed at 850 hPa should be greater than the 300 hPa (to exclude extra-tropical cyclones).

Simulated Global TC Tracks

Future Projections

Future changes in "Landing" tropical cyclones

The frequency of tropical cyclones approaching Japan and Korea may decrease in the future.

However, once a TC approaches the coast lines, mean of maximum wind velocity is larger than the present climate, leading to a catastrophic damage in the future.

(a) July-October mean of TC frequency near coasts

increase

What causes TC track changes?

Steering flow (850-300hPa) changes

Steering flow changes

- (westerly flow anomaly)
 partly explain TC track
 changes by inhibiting
- ^{••} westward TC motion.

TC genesis frequency changes

TC genesis location changes (eastward shift) **mainly** explain TC track changes.

Genesis potential index

To determine the factors behind such genesis changes, we used a Genesis Potential Index (GPI) by Emanuel and Nolan (2004) with some modifications.

<u>GPI performs reasonably well in reflecting the changes in TC genesis frequency.</u>

Each term contribution to the changes in GPI

=>Vorticity and vertical wind velocity contribute to the decrease in GPI in the western WNP.

-3.6 -4.0

Weakening of Walker Circulation

Vecchi and Soden (2007, *J. Climate*) documented that CMIP3 models consistently project weakening of Pacific Walker Circulation in the future.

Improvements in TC climatology by the new 20-km mesh MRI-AGCM

•TC intensity is weak compared with observations Improved

Future changes in TC number and intensity

Is the projected eastward shift in TC frequency robust?

Projected future change in TC frequency of occurrence.

Which is true?

Multi-physics & Multi-SST ensemble projections

3 (cumulus) \times 4 (SST) = 12 ensemble experiments

	YS Scheme	KF Scheme	AS Scheme
CMIP3 Mean SST	Y0	K0	A0
Cluster1 SST	Y1	K1	A1
Cluster2 SST	Y2	K2	A2
Cluster3 SST	Y3	K3	A3

(a) Ensemble Mean of Future Changes in TCF

There is a projected eastward shift in TC tracks but with less robustness.

Is the projected eastward shift in TC frequency robust?

Although a number of models project eastward shift in TC tracks, uncertainty remains.

Future change in frequency of Category 5 (C5) occurrence

•The frequency of C5 TCs appears to increase in the northern portion of the WNP basin.

 \cdot Note that the tracks of C5 TCs in the present-day simulation show a northward shift relative to observations. This bias should be taken into account and corrected when interpreting the results.

Conclusion

The projected TC activity change in the western North Pacific (WNP) indicates:

- (a) Positions of the prevailing northward recurving TC tracks will shift eastward over the open ocean of the WNP.
- (b) TC track changes are partially due to changes of the large scale steering flows, but primarily owning to the changes in TC-genesis locations.
- (c) The enhanced TC genesis in the eastern WNP is due to the increased *in situ* low-level cyclonic vorticity, reduced vertical wind shear, caused by Rossby wave response induced by enhanced diabatic heating in the central tropical Pacific.
- (d) Uncertainty remains regarding position of eastward shift and even the projection of eastward shift in TC tracks. A number of ensemble projections are necessary to reduce uncertainty.

Projected future changes in TC intensity

Present 25year (1979-2003)
Future 25year (2075-2099)

- •: significant increase at 95% level
- : significant decrease at 95% level

Previous version

•New version projects subtle increase in the frequency of intense TCs.