Projected future changes in tropical cyclones and their uncertainties by MRI-AGCM

> <u>Hiroyuki Murakami (JAMSTEC/MRI)</u>, and KAKUSHIN Team 3

Relevant papers:

Murakami et al. (2012c, *Climate Dyn., Submitted*), Sugi et al. (2012, *J. Meteor. Soc. Japan, In press*), Murakami et al. (2012b, *Climate Dyn., In press*), Murakami et al. (2012a, *J. Climate, In press*), Murakami et al. (2011, *J. Climate*), Murakami and Wang (2010, *J. Climate*), Murakami and Sugi (2010, *SOLA*), Sugi et al. (2009, *SOLA*)

Outline

- Review of previous studies on projected future changes in tropical cyclones (TCs)
- New high-resolution (20-km-mesh) MRI-AGCM and projected future change in TC activity
- Multi-physics and multi-SST ensemble experiments using 60-km-mesh MRI-AGCM
- Summary

20 km-mesh grids

Review of impact of global warming on TC activity

nature geoscience

REVIEW ARTICLE PUBLISHED ONLINE: 21 FEBRUARY 2010 | DOI: 10.1038/NGE0779

Tropical cyclones and climate change

Thomas R. Knutson¹*, John L. McBride², Johnny Chan³, Kerry Emanuel⁴, Greg Holland⁵, Chris Landsea⁶, Isaac Held¹, James P. Kossin⁷, A. K. Srivastava⁸ and Masato Sugi⁹

Knutson et al. (*Nat. Geosci.*, 2010)

Whether the characteristics of tropical cyclones have changed or will change in a warming climate — and if so, how — has been the subject of considerable investigation, often with conflicting results. Large amplitude fluctuations in the frequency and intensity of tropical cyclones greatly complicate both the detection of long-term trends and their attribution to rising levels of atmospheric greenhouse gases. Trend detection is further impeded by substantial limitations in the availability and quality of

- 1. <u>Consistent results</u> (consensus)
 - A reduced frequency of global TCs
 - •A future increase in frequency of intense TCs
- 2. Inconsistent results (uncertainty)
 - Difference in projected future changes in TC frequency in a specific ocean basin

Among 14 previous numerical studies, 5 indicated an increase in the North Atlantic, while 9 reported a decreasing frequency (Murakami and Wang, 2010)

- 3. Challenging task (unknown)
 - •Effect of global warming on **regional TC activity**

History of MRI-AGCM development

MRI-AGCM3.2 (since 2009) New version

AMIP-type 25 years experiments are conducted using observed SST for the present-day climate.

Future projections of 25 years are conducted by prescribing CMIP3 ensemble mean SST and clustered SSTs.

Comparisons between v3.1 and v3.2 MRI-AGCMs

		Previous version	New version	
		(contributed to IPCC AR4)	(for IPCC AR5)	
		MRI-AGCM 3.1	MRI-AGCM 3.2	
Horizonta	al	(IMIZULA EL AI. 2000, JMISJ) TL959	(101/2018 et al., 2012) (20km)	
Vertical r	esolution	60 levels (top at 0.1hPa)	64 levels (top at 0.01hPa)	
Time inte	gration	Semi-L	agrangian	
Time step	р	6minutes	10minutes	
Cumulus convectio	on	Prognostic Arakara-Schubert	Yoshimura (Tiedtke-based)	
Cloud		Smith (1990)	Tiedtke (1993)	
Radiatior	ו	Shibata and Aoki (1989) Shibata and Uchiyama(1992)	JMA (2007)	
GWD		Iwasaki e	t al. (1989)	
Land sur	face	SiB ver0109(Hirai et al.2007)		
Boundary	y layer	MellorYan	nada Level2	
Aerosol (direct)	Sulfate aerosol	5 species	
Aerosol (indirect)	1	No	

Improvements in TC climatology by the new 20-km mesh MRI-AGCM

•TC intensity is weak compared with observations Improved

Time-slice Experiment

Spatial pattern of prescribed future changes in SST

- •Relatively larger increase in SST in the Northern Hemisphere than in the Southern Hemisphere.
- The SST increase is the largest in the tropical Central Pacific (Xie et al. 2010).

Future changes in TC number and intensity

Future change in frequency of Category 5 (C5) occurrence

•The frequency of C5 TCs appears to increase in the northern portion of the WNP basin.

 \cdot Note that the tracks of C5 TCs in the present-day simulation show a northward shift relative to observations. This bias should be taken into account and corrected when interpreting the results.

Comparison of projected future changes in TC frequency between versions

Uncertainty in regional change in TC frequency (WNP)

Multi-physics ensemble experiment

	MRI-AGCM 3.2 AS	MRI-AGCM 3.2 KF	MRI-AGCM 3.2 YS		
Horizontal resolution		T _L 319 (60km)	•		
Vertical resolution	64	levels (top at 0.01	nPa)		
Time integration		Semi-Lagrangian			
Time step		20 minutes	_		
Cumulus convection	Prognostic Arakara-Schubert	Kain-Fritsch	Yoshimura (Tiedtke-based)		
Cloud		Tiedtke (1993)			
Radiation	JMA (2007)				
GWD		Iwasaki et al. (1989))		
Land surface	SiB	ver0109 (Hirai et al	.2007)		
Boundary layer		MellorYamada Leve	12		
Aerosol (direct)		5 species			
Aerosol (indirect)		No			

Performance of control simulations

The YS and KF simulates reasonable TC global distribution, whereas AS has pronounced biases.

Prescribed SST anomalies for multi-SST Ensemble Projections

Prescribed SST anomalies for multi-SST Ensemble Projections

Multi-physics & Multi-SST ensemble projections

3 (cumulus) \times 4 (SST) = 12 ensemble experiments

	YS Scheme	KF Scheme	AS Scheme
CMIP3 Mean SST	Y0	K0	A0
Cluster1 SST	Y1	K1	A1
Cluster2 SST	Y2	K2	A2
Cluster3 SST	Y3	K3	A3

Future changes in TC number [%]

Ensemble mean of future changes in TC frequency

Plus mark indicates that the difference is statistically significant at the 90 % confidence level or above and more than 10 experiments show the same sign of the mean change.

Ensemble mean of future changes in TC frequency

There is no robust change in the southwest quadrant of WNP.

Projected eastward shift may be robust in NAT. But mean shift is further east compared with that projected by the 20-km-mesh previous version.

Conclusion

We have developed a new 20-km-mesh high-resolution AGCM for addressing future changes in TC activity. In order to evaluate uncertainties, we also conducted multi-physics and multi-SST ensemble projections. New findings are as follows.

- (a) Compared with the previous version, new version yields a more realistic global distribution of TCs. Moreover, the new version is able to simulate extremely intense TCs (Categories 4 and 5).
- (b) Future projections consistently suggest a significant decrease in TC genesis number in global, both hemispheres, western WNP, and SPO, whereas they suggest pronounced increase in the Central Pacific.
- (c) A significant increase in the frequency of intense TCs with global warming occurs in both versions. However, the increase is smaller in the new version than in the previous version. New version also projects a marked decrease in mean intensity in South Pacific Ocean.
- (d) Future changes in TC frequency at regional scales are inconsistent among the ensemble experiments. These discrepancies highlight continuing uncertainties in the future changes in regional TC activity. Further study is needed to explore the uncertainties.