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Review of impact of global warming on TC activities
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Tropical cyclones and climate change Knutson et al.
Thomas R. Knutson'*, John L. McBride?, Johnny Chan?, Kerry Emanuel®, Greg Holland®, Chris Landsea®, (Na t GeOSCl. ) 20 1 O)

Isaac Held', James P. Kossin’, A. K. Srivastava® and Masato Sugi®

Whether the characteristics of tropical cyclones have changed or will change in a warming climate — and if so, how — has
been the subject of considerable investigation, often with conflicting results. Large amplitude fluctuations in the frequency and
intensity of tropical cyclones greatly complicate both the detection of long-term trends and their attribution to rising levels of
atmospheric greenhouse gases. Trend detection is further impeded by substantial limitations in the availability and quality of

1. Consistent results (consensus)
* A reduced frequency of global TCs
* A future increase in frequency of intense TCs
2. Inconsistent results (uncertainty)
- Difference in projected future changes in TC frequency
in a specific ocean basin

Among 14 previous numerical studies, 5 indicated an increase in the North
Atlantic, while 9 reported a decreasing frequency (Murakami and Wang, 2010)

3. Challenging tasks (unknown)
- Effect of global warming on TC activities 1n a specific ocean basin




History of MRI-AGCM development

MRI-AGCM3.0 (before 2007) (Mizuta et al. 2006; Oouchi et al. 2006)
This model was developed from JMA operational NWP model.
First 20-km mesh climate model which simulates for multi decades.

very minor change

MRI-AGCM3.1 (from 2007) AMIP-type experiments (Kitoh et al. 2009;
Previous version  Murakmai and Wang 2010; Murakami et al. 2011)

Necessary to be improved because geographical
distribution of TCs and TC intensity are insufficient.
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AMIP-type 25 years experiments are conducted using observed
SST for the present-day climate.

Future projections of 25 years are conducted by prescribing CMIP3
ensemble mean SST.
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Comparisons between v3.1 and v3.2 MRI-AGCMs

Previous version New version
(contributed to IPCC AR4) (for IPCC ARY)
MRI-AGCM 3.1 MRI-AGCM 3.2
(Mizuta et al. 2006, JMSJ) (Mizuta et al., 2011, submitted)
Horizontal TL959 (20km)
resolution
Vertical resolution | 60 |evels (top at 0.1hPa) 64 levels (top at 0.01hPa)
Time integration Semi—Lagrangian
Time step 6minutes 10minutes
Cumulus Prognostic Arakara—Schubert |Yoshimura (Tiedtke—based)
convection
Cloud Smith (1990) Tiedtke (1993)
Radiation Shibata and Aoki (1989) JMA (2007)
Shibata and Uchiyama(1992)
GWD Iwasaki et al. (1989)
Land surface SiB ver0109(Hirai et al.2007)
Boundary layer MellorYamada Level2
Aerosol (direct) | Sylfate aerosol O species
Aerosol (indirect) No
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Time-slice Experiment
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Present-day simulations

prescribed by observed SST
(1.e., AMIP-style; 1979—2003)




Improvements in TC climatology by the new 20-km
mesh MRI-AGCM
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The number for each basin
show the annual mean
number of TCs.
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-Predicted TC number in the WNP is underestimated. Improved
-‘TC 1ntensity 1s weak compared with observations  Improved



Comparison of TC intensity between versions

Observations
Previous version
New version

Annual mean TC frequency

(a) Global (previous model) (b) Northern Hemisphere (previous model) (c) Southern Hemisphere (previous model)
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(d) Global (new model) (e) Northern Hemisphere (new model) (f) Southern Hemisphere (new model)
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- -‘TC intensity 1s substantially improved in the new version.



(a) AGCM20_3.1

N=1193, SLP=993.0, P=1
300

200

100

-100

-200

2.0, TW=16.6

N=
300

200

-100

-200

(b) AGCM20 3.2
319

1384, SLP=969.

_'.

(d) AGCM20 32(T Wlnd)

| | I I |
0 100 200 300 400 500 600 700 800 900 1000
km

500

600 —

700 —

800

0

100

-300 -300
300 -200 -100 0 100 200 300 -300 -200 -100 0
km
W _| ; ! mm) [mm/day]
0 100 200 300 400

(e) AGCM20_3.2 (R. Wind)
| | | | — | | | |

200

——

30 [m/s]

300

200 —W_
f

{

i _/

Q.
400

900 T8

\
T

km

m —

-20-18 -16 - 12 -

08—64202

-‘Simulated T C structures by t

T 7
I I !
4 6 8

100 200 300 400 500 600 700 800 900 1000

[m/s]
12 14 16 18 20

the new version are reasonable.

Comparison of composite TC structures

(c) Azimuthal Mean T. Wind Speed
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Future Projection




Spatial pattern of prescribed future changes in SST

215t (2075-2099) — Present (1979-2003)
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-Relatively larger increase in SST in the Northern Hemisphere
than 1n the Southern Hemisphere.

*The SST increase is the largest in the tropical Central Pacific
(Xie et al. 2010).



Future change in global TC distribution
Present-day (1979-2003) New version

Statistically
significant
decrease in global
TC genesis
number by 15%.
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Future (2075-2099) New version

Marked decrease
in the western
North Pacific and
Southern
Hemisphere.
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Comparison of projected future changes between models
— Frequency of TC occurrence —

New version
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-Both versions show significant decrease in TC frequency
over the South Pacific and western portion of WNP.
-Both versions show significant increase in TC frequency
over the central Pacific.

Inconsistent in the eastern quadrant of WNP and NAT.



Projected future changes in TC intensity

Present 25year (1979-2003 ) @ :significant increase at 95% level
Future 25year (2075-2099 ) @ :significant decrease at 95% level
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-Both versions show significant decrease in the frequency of weak TCs.
‘New version projects subtle increase in the frequency of intense TCs.



Previous version ) AGCM20_3.1 (PD)
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(c) AGCM20_3.1 (GW — PD)
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" Previous version shows large increase in TC intensity at the eastern
WNP, while new version shows a striped pattern.

“Previous version shows a subtle increase in mean TC intensity in the
South Pacific, whereas new version shows a marked decrease.

Observatrions Observations (1979—2003)

= According to Knutson et al. (2010), previous studies have also
projected a weakening of TC intensity in the Southern Pacific;
however, other studies also have projected a marked increase in TC
intensity within this basin. => They highlight continuing uncertainty.
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Future change in frequency of Category 5 (C5) occurrence

Observations Present-day Future
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-The frequency of C5 TCs appears to increase in the northern portion of
the WNP basin.

-Note that the tracks of C5 TCs in the present-day simulation show a
northward shift relative to observations. This bias should be taken into
account and corrected when interpreting the results.



Mechanisms of future changes in TC genesis

Projected future changes in tropical cyclone genesis frequency
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The changes are similar to the projected changes in TC
frequency (TCF), indicating that the TCF changes are
primarily controlled by the tropical cyclone genesis changes.
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Interpretation for the future changes in TC activity (I)

Weakening of pacific Walker circulation

=y Decrease in TC genesis number in the western WNP and South Pacific.
—p Increase in TC genesis number in the central Pacific.

SST increases more largely in the NH than in SH.

> Marked subsidence in the SH causes decrease in TC genesis number.

14 16 1.8 20 22 24 26

i | i i

00 02 04 06 08 1,




Interpretation for the future changes in TC activity (ll)

Weakening of pacific Walker circulation

—) Increase in vertical easterly wind shear causes enhancement of activity of synoptic-

scale disturbances, leading to increase in TC genesis in the central Pacific.
—p Increase in vertical westerly wind shear causes inactivation of synoptic-scale

disturbances, leading to decrease in TC genesis in the western WNP.
= Increase in vertical wind shear causes decrease in TC genesis number in the NAT.
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Interpretation for the future changes in TC activity (lll)

Increase in equatorially antisymmetric heating over central Pacific

—» The increase in diabatic heating causes cyclonic vorticity anomaly in the
southeastern WNP thgough the Rossby wave response (Gill 1980); resulting in

increase in TC genesis at the southeastern quadrant of WNP (but this 1s not clear in
the new version).

The decrease in diabatic heating causes anti-cyclonic vorticity anomaly in the
western WNP, resulting in decrease in TC genesis.
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(a)

(b)

(©)

(d)

(e)

Conclusion

We have developed a new 20-km-mesh high-resolution AGCM for

addressing future changes in TC activity. New findings compared with the
previous version are as follows:

Compared with the previous version, new version yields a more realistic
global distribution of TCs. Moreover, the new version 1s able to simulate
extremely intense TCs (Categories 4 and 5).

Future projections consistently suggest a significant decrease in TC
genesis number in global, both hemispheres, western WNP, and SPO,
whereas they suggest pronounced increase in the Central Pacific.

A significant increase in the frequency of intense TCs with global
warming occurs in both versions. However, the increase 1s smaller in the
new version than in the previous version. This 1s because new version
shows significant decrease in TC intensity in the South Pacific.

The new version suggests that the frequency of Category 5 TCs increases
in the northern portion of the WNP, indicating that TC-related
socioeconomic damage may become more severe under global warming.

Above all, projected future changes in TC activity in the global and
hemlspherlc scales are robust between versions; however, those in
regional scales are inconsistent in terms of degree and even 1n sign. These
discrepancies highlight continuing uncertainties in the future changes in
regional TC activity. Further study 1s needed to explore the uncertainties.
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