Typhoon simulation with the 20 km mesh global spectral model on the Earth Simulator

Hiroyuki Murakami (AESTO) Takayuki Matsumura (JMA) And Kyosei 4 Group

• Numerical experiments on the Earth Simulator

20	km global model	1-	-5 km cloud resolving m	odel
Effects of global warming on typhoons and hurricanes by time slice experiments			Effects of global warming on heavy rainfall and heavy snowfall by time slice experiments	
	Contribution to the IPCC-AR4, and government policies on the global environment			

The 2nd International Workshop on the Kyosei project

The Time Slice Experiment

Tropical Cyclones in Warm Climate

Dr. Yoshimura will show this later

Frequency: Each TC is clpc134: ~/UU/TL959/tc2/

Are those time slice experiments reliable?

Are typhoons predictable with the model?

Lets verify its typhoons predictability with short range forecasts.

Bottom Line

Our 20km mesh AGCM can simulate

Typhoon Position

Typhoon Strength

Heavy Rainfall

more realistically than JMA operational 60km mesh GSM.

The 2nd International Workshop on the Kyosei project

A Problem in short range forecasts

22Gbyte!

 Initialization (NNMI) becomes impractical when horizontal resolution is increased.

	Vertical Mode(KByte)		Holizontal Mode(MByte)	
	Eigen Value	Eigen Vector	Eigen Value	Eigen Vector
T106L40	0.31	25.00	0.44	31.60
T213L40	0.31	25.00	1.76	251.00
TL319L40	0.31	25.00	3.92	837.27
TL511L60	0.47	56.25	10.02	3423.38
TL959L60	0.47	56.25	35.19	22535.25

 Introduction of New Initialization Scheme Vertical mode Initialization (Bourke and McGregor 1983)

Horizontal Mode Separation is not required→ computational efficiency Incremental NMI (Ballish et al. 1992)

Support Vertical mode Initialization assumption Refinement of tidal mode

Results of the New Initialization

1. Surface Pressure at a Point

2. Two Dimensional Surface Pressure Distribution

TL959L60 2003 08 06 06 UTC Initial By the Earth Simulator

Short Range Typhoon Forecasts *d*

Model

20 km mesh global climate model (TL959L60)

Comparison

Model: JMA operational global spectral model (GSM;T213L40,60km mesh) Truth: Regional Specialized Meteorological Center (RSMC) Best Track Data

Target typhoons to be predicted

Typhoon	Integration term	
DIANMU(T0406)	2004061312-2004062112 8days	
MAEMI(T0314)	2003090600-2003091318 8days	
ETAU(T0310)	2003080306-2003080906 6days	
HALONG(T0207)	2002070800-2002071612 9days	

Initial data

- -JMA 60km mesh analysis was used by Interpolating into 20km mesh
- •Forecast-Forecast Cycle by the new initialization scheme

Typhoon Bogus

Typhoon Position and Strength

Typhoon Position Error

The 2nd International Workshop on the Kyosei project

H. Murakami 24/Feb/2005

Intensifing Tendency

FT=0FT=72

Precipitation Bias Score

Verification Period : 18 days (same as typhoon forecast period)

Area : Japan

Observation : AMeDAS (Automated Meteorological Data Acquisition System)

Summary

Typhoon simulations in a forecast mode

-Our high resolution AGCM can simulate position and intensity of typhoons more realistically than a lower resolution JMA GSM.

A new initialization scheme

-computationally effective for high resolution model -succeeded in removing spurious gravity wave

20 km mesh global climate model and GSM 🚾 🔰

	20 km mesh global	Global Spectral Model		
	climate model	(GSM)		
Horizontal Grids	1920x 960	640 x 320		
Vertical Layers	60	40		
Truncation Wave	TL959	T213		
Grid Spacing	20km	60km		
Top Layer Pressure	0.4hPa			
Dynamical frame	Semi-Lagrangian scheme	Eulerian scheme		
	Shiata et al. (1999)			
Radiation Process	Solar (every hour)			
	Infrared (3 hourly)			
Drasinitation	Prognostic Arakawa-schubert			
Precipitation	Large-scale condentation			
Process	Prognostic cloud water content			
Gravity wave drug	Iwasaki et al (1989)			
Land surface	Simple Biosphere(SiB) model			
PBL and	PBL and Mellor-Yamada level 2			
surface fluxes	Moni-Obukhov similarity			

The 2nd International Workshop on the Kyosei project

H. Murakami 24/Feb/2005

20 km mesh global climate model *∞*

- MRI/JMA unified global model
 - Based on the JMA global spectral model (GSM0103)
 - <u>Semi-Lagrangian advection scheme</u>
 - Fortran90 coding style
 - Radiation process : MRI-version or NPD-version
 - Prognostic Arakawa-Schubert, Large-scale condensation
 - Prognostic cloud water content
 - Mellor-Yamada level2, Monin-Obukhov similarity
 - Gravity wave drag (Long wave, short wave)
 - Simple Biosphere (SiB)

Computational Performance

Execution Time : 24-Hours forecast on the ES
TL959L60 : 6min (with 60-nodes)

- 35% of Peak Performance

Legendre transform : W2G 6.8Gflops/cpu, 85%
G2W 7.6Gflops/cpu, 95%