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Abstract
This study examines the performance of the Geophysical Fluid Dynamics Laboratory Forecast-Oriented Low Ocean Reso-
lution version of CM2.5 (FLOR; ~ 50-km mesh) and high-resolution FLOR (HiFLOR; ~ 25-km mesh) in reproducing the 
climatology and interannual variability in rainfall associated with tropical cyclones (TCs) in both sea surface temperature 
(SST)-nudging and seasonal-forecast experiments. Overall, HiFLOR outperforms FLOR in capturing the observed climatol-
ogy of TC rainfall, particularly in East Asia, North America and Australia. In general, both FLOR and HiFLOR underestimate 
the observed TC rainfall in the coastal regions along the Bay of Bengal, connected to their failure to accurately simulate the 
bimodal structure of the TC genesis seasonality. A crucial factor in capturing the climatology of TC rainfall by the models 
is the simulation of the climatology of spatial TC density. Overall, while HiFLOR leads to a better characterization of the 
areas affected by TC rainfall, the SST-nudging and seasonal-forecast experiments with both models show limited skill in 
reproducing the year-to-year variation in TC rainfall. Ensemble-based estimates from these models indicate low potential 
skill for year-to-year variations in TC rainfall, yet the models show lower skill than this. Therefore, the low skill for interan-
nual TC rainfall in these models reflects both a fundamental limit on predictability/reproducibility of seasonal TC rainfall 
as well as shortcomings in the models.

1 Introduction

Rainfall associated with tropical cyclones (TCs) plays an 
important role in terms of rainfall extremes and climatology 
in both the tropics and the mid-latitudes (Rogers et al. 2006; 
Jiang and Zipser 2010; Khouakhi et al. 2017), and it has 

also been found to help in reducing the duration of droughts 
(Maxwell et al. 2012; Kam et al. 2013). TC rainfall and asso-
ciated flooding have been responsible for significant soci-
etal and economic impacts (Rappaport 2014; Czajkowski 
et al. 2017; Peterson et al. 2013), with Hurricane Harvey 
being one of the latest examples (Emanuel 2017; Risser and 
Wehner 2017; van Oldenborgh et al. 2017). Therefore, a 
realistic simulation and characterization of TC rainfall in 
climate models could provide a tool for understanding and 
predicting TC-induced flooding, and contribute to improving 
our preparedness, mitigation and management of TC-related 
hazards.

Previous studies used observations to investigate the con-
tribution of TC rainfall to the total precipitation at regional 
(Jiang and Zipser 2010; Barlow 2011; Dare et al. 2012; Lav-
ender and Abbs 2013; Prat and Nelson 2013; Chen and Fu 
2015; Gu et al. 2017; Gaona et al. 2018) and global scales 
(Jiang and Zipser 2010; Jiang et al. 2011; Kamahori 2012; 
Skok et al. 2013; Khouakhi et al. 2017). For example, the 
rainfall associated with these storms contributes to around 
50% of the total precipitation over a majority of tropical 
ocean basins (Jiang and Zipser 2010) while around 4% of the 
total rainfall in the tropical North Atlantic is related to these 
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storms. TC rainfall accounts for up to 54% of total rainfall in 
the northern Philippines (Bagtasa 2017), with a maximum 
of 30% northeast of Puerto Rico (Rodgers et al. 2001). TC 
rainfall is important not only in terms of seasonal or annual 
contributions, but also in terms of extremes, with analyses 
performed at the regional (Larson et al. 2005; Shepherd 
et al. 2007; Lau et al. 2008; Knight and Davis 2009; Barlow 
2011; Chen et al. 2013; Villarini and Denniston 2016) and 
global scales (Prat and Nelson 2016). Recently, Khouakhi 
et al. (2017) provided a comprehensive overview of the role 
that TCs play in terms of overall and extreme rainfall over 
land at the global scale, highlighting regions that are more 
susceptible to this hazard.

In addition to analyses using observational data, mod-
eling studies have used general circulation models (GCMs) 
to evaluate the responses of TC rainfall to increased  CO2 
(Scoccimarro et al. 2014, 2017; Villarini et al. 2014). The 
rate of TC rainfall is expected to increase with respect to 
anthropogenic forcing (Langousis and Veneziano 2009; 
Knutson et al. 2010; Villarini et al. 2014; Lin et al. 2015; 
Scoccimarro et al. 2017); Using idealized experiments, a 
doubling of  CO2 without increasing sea surface temperature 
results in a reduction in TC rainfall while a uniform increase 
of 2 K in sea surface temperature (SST) (with or without 
 CO2 doubling) leads to an increase in TC rainfall (Villar-
ini et al. 2014). In contrast to the rate, TC rainfall area is 
modulated by relative SST, which results in small globally-
averaged projected to changes, though there can be substan-
tial redistributions in space (Lin et al. 2015). The capability 
of GCMs in reproducing TC rainfall has been evaluated in 
different studies, including the Geophysical Fluid Dynam-
ics Laboratory (GFDL) HiRAM (Lin et al. 2015) and the 
Centro Euro-Mediterrraneo sui Cambiamenti Climatici 
(CMCC) climate model (Villarini et al. 2014; Scoccima-
rro et al. 2017); using the Cloud-Resolving Storm Simula-
tor (CReSS) of Nagoya University, the TC rainfall in two 
landfalling TCs was found to increase by about 5–25% and 
with a tendency for the increases to be larger toward higher 
rain rates (Wang et al. 2014). A study focused on the North 
Atlantic with the GFDL-FLOR model found that shifts to 
the latitude of extratropical transition could lead to increases 
in rainfall from landfalling TCs along the Northeast of the 
United States (Liu et al. 2018).

Although major advancements have been made on 
the extent to which TC rainfall accounts for total rainfall 
at global and regional scales and on its association with 
extreme precipitation events, little attention has been paid to 
the seasonal forecast of this quantity. This is partly because 
the current generation of climate models are not very skill-
ful at making seasonal forecasting of TC rainfall due to the 
complexities associated with correctly forecasting TC gen-
esis, track, TC–land interactions, and the physical processes 
underlying the TC rainfall distributions. To the best of our 

knowledge, the only research on seasonal forecast of TC 
rainfall was attempted for Texas at the annual scale using 
multiple linear regression models (Zhu et al. 2013).

Among the existing models, the GFDL Forecast-Oriented 
Low Ocean Resolution version of CM2.5 (FLOR) has shown 
reasonable skill at representing the observed TC genesis, 
tracks and intensity (Vecchi et al. 2014; Zhang et al. 2016a, 
2018; Murakami et al. 2017). Overall, the high-resolution 
version of FLOR (HiFLOR) was shown to further improve 
the simulation of TCs, extreme precipitation, climatology of 
the North American monsoon in the Gulf of California and 
the seasonal forecast of major hurricanes (Murakami et al. 
2015, 2016; Pascale et al. 2016, 2017; van der Wiel et al. 
2016; Zhang et al. 2016b). Despite the promising capability 
of FLOR and HiFLOR in reproducing the TC characteristics, 
little is known about their skill in reproducing TC rainfall 
using SST nudged to the observed estimates, and in fore-
casting the seasonal TC rainfall. Therefore, the goals of this 
study are to quantify the capabilities of FLOR and HiFLOR 
in reproducing the TC rainfall at the global scale, as well as 
the skill in forecasting this quantity at the seasonal scale.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the data and the methodology, followed by 
Sect. 3 where we present the results related to the climatol-
ogy of TC rainfall, its interannual variability and response to 
El Niño/La Niña conditions. Section 4 summarizes the main 
results and concludes the paper.

2  Data and methodology

2.1  Data

The observed TC data are obtained from the International 
Best Track Archive for Climate Stewardship (IBTrACS; 
v03r10) with longitude, latitude, date and TC intensity for 
all recorded storms (Knapp et al. 2010). In terms of observed 
precipitation, we use the Multi-Source Weighted-Ensemble 
Precipitation (MSWEP) V2, which is based on a combi-
nation of rain gauge measurements, satellite products and 
reanalysis data (Beck et al. 2017a, b). Because MSWEP V2 
is available at the 0.1-degree spatial and 3-h temporal reso-
lution, we remap it to 0.25 × 0.25 degree spatial resolution 
and aggregate it to 6-h time scale to match the HiFLOR 
outputs. TC rainfall is defined as the rainfall within a 500-
km radius of each TC center because this radius can account 
for the rainfall located from the inner core of the TC and the 
adjacent rainbands (Dare et al. 2012), and we only consider 
precipitation over land.
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2.2  Climate models and experiments

The SST-nudging and seasonal-forecast experiments are 
performed with FLOR and HiFLOR. FLOR is devel-
oped by combing the oceanic and ice components of 
GFDL Coupled Model version 2.1 (CM2.1) (Delworth 
et  al. 2006), with some modifications to the numerics 
and physical parameterizations in the ocean component 
from CM2.1, and the atmosphere and land components 
of CM2.5 (Delworth et al. 2012). The atmosphere and 
land components of TC-permitting FLOR have a spatial 
resolution of approximately ~ 50 km. The initial condi-
tions of the ocean and sea–ice components are obtained 
from the GFDL’s ensemble coupled data assimilation 
system (ECDA) (Zhang and Rosati 2010), while those 
for the atmospheric and land components are from the 
atmosphere-only simulations with FLOR by prescribing 
SST (Vecchi et al. 2014). HiFLOR is developed based on 
FLOR by increasing the horizontal resolution from ~ 50 to 
~ 25 km, with the same sub-grid physics and with ~ 100-
km mesh sea ice and ocean component (Murakami et al. 
2015, 2016). The seasonal forecasts for the atmosphere 
and land components of HiFLOR are initialized with an 
arbitrary year from a control simulation in which anthro-
pogenic forcing is fixed at the 1990 level (Murakami et al. 
2015). By doing this, the forecasts of HiFLOR are con-
structed so that the predictability comes merely from the 
conditions of ocean and sea–ice. We evaluate the seasonal 
forecasts of TC rainfall with FLOR and HiFLOR for target 
months July–November (JASON) initialized in July and 
for target months January–May (JFMAM) initialized in 
January. TCs are tracked using the algorithm by Harris 
et al. (2016).

The SST-nudging experiments include six-member 
experiments for the period 1980–2015, in which the SST 
and sea surface salinity are nudged to the observed estimates 
at 5-day and 10-day scales using FLOR and HiFLOR. The 
SST-nudging experiments are used to assess whether the 
forcing of the observed SST can reproduce the observed TC 
rainfall. Both FLOR and HiFLOR have six-member SST-
nudging experiments: three members for 5-day and 10-day 
nudging time scales, respectively. However, Murakami 
et al. (2015) discuss that there is no significant difference 
between 5-day and 10-day nudging time scales in terms of 
TC statistics such as interannual variation of TC frequency. 
Therefore, we consider these members as a same ensemble 
in this study. In addition to the SST-nudging experiments, 
we also use 12-member seasonal forecast experiments with 
both FLOR and HiFLOR.

Here we examine TC rainfall and its proportion to total pre-
cipitation using observations and climate model simulations. 
We evaluate the skill of the two GFDL models in representing 
the year-to-year variations in TC rainfall in terms of the mean 

square error (MSE) skill score  SSMSE (Hashino et al. 2007), 
which has been used in previous studies (Slater et al. 2017; 
Zhang et al. 2017):

where σo represents the standard deviation of the observed 
TC rainfall. A perfect forecast/SST nudging run has an 
 SSMSE value of 1 and the performance drops when the val-
ues are smaller than 1. An  SSMSE value of 0 suggests that the 
forecast accuracy is the same as the performance using cli-
matology as the forecast/SST nudging. In addition, a nega-
tive skill score indicates that the accuracy is even worse than 
the forecast/SST-nudging run using climatology. The value 
of  SSMSE can be decomposed into three parts (Murphy and 
Winkler 1992):

where �fo denotes the correlation coefficient between obser-
vations and GCM outputs, and �2

fo
 represents the potential 

skill (coefficient of determination), which is the skill that can 
be reached in the absence of biases; �f  and �o denote the 
standard deviation of forecasted/simulated and observed 
quantities, respectively; �f  and �o represent the mean of fore-
casted/simulated and observed TC raiall, respectively. The 
second term 

[

�fo −
�f

�o

]2

 denotes the conditional bias known 

as the slope reliability (SREL). The third term 
[

�f−�o

�o

]2

 is the 
unconditional bias (i.e., standardized mean error (SME)). 
The decomposition of the forecast skill score  (SSMSE) can 
quantitatively diagnose the skill of the forecast, and identify 
potential biases (e.g., conditional and unconditional biases). 
If the potential skill is low, predictability is low even if the 
biases are corrected.

Because the TC rainfall and its proportions with respect to 
the total seasonal rainfall have zero values in some grids for the 
period 1980–2015 (i.e., sample size equal to 36), we exclude 
the grids with more than 20 out of 36 zero values when cal-
culating the skill. We also mask out the regions with average 
observed TC density (binned into 1° × 1° spatial grids) smaller 
than 2 during JASON, and those with average observed TC 
density smaller than 1 during JFMAM when calculating the 
skill score  SSMSE and its decompositions.

(1)SSMSE = 1 −
MSE

�2

o

(2)SSMSE = �
2

fo
−

[

�fo −

�f

�o

]2

−

[

�f − �o

�o

]2
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3  Results

3.1  Climatology of TC rainfall and its fractional 
contribution

We first evaluate whether the SST-nudging experiments 
can reproduce the observed climatology of TC rainfall 
during JASON for the period 1980–2015. Overall, the 
observed climatology of TC rainfall in East and South Asia 
has a larger magnitude than that in North America (Fig. 1, 
top panels). This is supported by a higher TC density in 
East and South Asia than in North America, as shown in 

observations and climate models (Figure S1). In particu-
lar, the Philippines, southern and eastern China, Vietnam, 
southern Japan, northeastern Indian and Myanmar receive 
an average of more than 100 mm of rainfall from TCs, 
with some regions receiving more than 120 mm. With a 
magnitude of ~ 60 mm, TC rainfall in the southeastern 
United States, the Caribbean regions, Mexico and Cen-
tral America is much lower than what observed along the 
East Asian coastal regions (Fig. 1). HiFLOR (Fig. 1, mid-
dle panels) produces TC rainfall with magnitudes larger 
than the observations in South China, Thailand, Vietnam, 
Korea and South Japan, while it underestimates it in the 
Northeastern Indian coast and Myanmar, probably because 

Fig. 1  Climatology of JASON TC rainfall (unit: mm) for the period 1980–2015 in (top) the observations, (middle) HiFLOR, and (bottom) FLOR
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of a lower TC density than in the observations (Figure 
S1). HiFLOR also produces slightly higher TC rainfall 
than observations in North and Central America (Fig. 1, 
middle right panel), while FLOR produces much less TC 
rainfall in these regions (Fig. 1, bottom right panel). FLOR 
simulates less rainfall than the observations in Asia except 
the Eastern Indian coast where FLOR produces slightly 
more rainfall (Fig. 1, bottom left panel). FLOR simulates 
less than 100 mm of TC rainfall in a large portion of South 
China and Thailand, where the TC rainfall in observa-
tions is higher than 100 mm (Fig. 1, bottom left panel). 
Overall, HiFLOR captures the climatology of TC rainfall 
in Asia and North America reasonably well, while FLOR 

markedly underestimates it in almost all the Asian regions 
(except for the southeastern Indian coast) and North Amer-
ica (Fig. 1).

During JFMAM, the observed TC rainfall in Asia is lower 
than that during JASON, especially along the Northeastern 
Indian coast, South China, Korea and Japan (Fig. 2). There 
are high values of TC rainfall in the Myanmar coast during 
JFMAM, consistent with relatively high TC density in this 
region (Figure S2), associated with the bimodal structure 
of TC genesis seasonality in the Bay of Bengal (Li et al. 
2013). In Australia, there are large values (in excess of 
60 mm) of observed TC rainfall in the northern part (Fig. 2, 
top right panel), consistent with high TC density for the 

Fig. 2  Climatology of JFMAM TC rainfall (units: mm) for the period 1980–2015 in (top) the observations, (middle) HiFLOR, and (bottom) 
FLOR
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region (Figure S2, top panel). HiFLOR reproduces well the 
observed TC rainfall in the Philippines, whereas there is 
an overestimation in southeastern China, Japan, Vietnam, 
Thailand and Southern India (Fig. 2, middle left panel). 
However, HiFLOR underestimates the TC rainfall in the 
Myanmar coast, probably because HiFLOR produces lower 
TC density in this region than in the observations (Figure 
S2, middle panel). In Australia, HiFLOR reproduces TC 
rainfall reasonably well in the northern part compared with 
the observations, albeit with slightly larger amounts in the 
southern part (Fig. 2, middle right panel). FLOR reproduces 
reasonably well the observed rainfall associated with TCs 
during JFMAM in Vietnam, the Philippines, South China, 
Korea and Japan but it also underestimates it in the Myan-
mar coast (Fig. 2, bottom right panel). FLOR clearly simu-
lates lower TC rainfall values than in the observations in 
Australia during JFMAM, and this is particularly true in the 
northern part (Fig. 2, bottom right panel).

Overall, these results show that HiFLOR slightly overes-
timates the observed TC rainfall in Asia and North America 
during JASON, while FLOR markedly underestimates it. 
During JFMAM, HiFLOR produces excessive TC rainfall in 
South China, the Philippines, Vietnam, Thailand and south-
eastern India, while FLOR produces more realistic rainfall 
footprints. In the northern part of Australia, HiFLOR out-
performs FLOR in reproducing the rainfall associated with 
TCs during JFMAM.

In addition to considering the total TC rainfall, we also 
consider its contribution to the total TC rainfall for a given 
season. During JASON, TC rainfall accounts for more than 
25% of total precipitation in Southeast China and the Philip-
pines, while the proportion slightly drops to around 20% in 
Vietnam, Japan and Korea, and to 10% in the coastal regions 
of East India and Bengal (Fig. 3, top left panel). Along the 
southeastern U.S. coast, TC rainfall accounts for ~ 12% of 
the total precipitation, while this percentage increases to 
25% in Baja California (Fig. 3, top right panel). HiFLOR 
simulates the proportion of TC rainfall in East Asia similar 
to the observations, albeit with a larger magnitude in south-
eastern China, Korea and Japan (Fig. 3, middle left panel). 
Moreover, HiFLOR reproduces very well the observed por-
tion of TC rainfall in North America during JASON (Fig. 3, 
middle right panel). FLOR greatly underestimates the 
proportion of TC rainfall in southeastern China, Vietnam, 
Philippines, Japan and Korea; however, FLOR appears to 
perform better than HiFLOR in simulating the proportion 
of TC rainfall along the southeastern Indian coast. FLOR 
markedly underestimates the proportion of TC rainfall in 
North America during JASON (Fig. 3, bottom right panel).

During JFMAM, the regions with relatively high frac-
tional contributions of TC rainfall are located in the Phil-
ippines and the coastal regions in Bay of Bengal (Fig. 4, 
top left panel). HiFLOR performs better than FLOR in 

reproducing the observed TC rainfall proportions in those 
regions (Fig. 4, middle and bottom left panels). Specifically, 
HiFLOR slightly overestimates the proportion of TC rainfall 
in southeastern China and Vietnam and Pakistan, and under-
estimates it in northeastern Indian and the Myanmar coast 
(Fig. 4, middle left panel), similar to the results for the total 
amounts (Fig. 2, middle left panel). During JFMAM, there 
is a high TC rainfall contribution in the western part of Aus-
tralia (> 25%) in the observations (Fig. 4, top-right panel), 
and HiFLOR reproduces it quite well (Fig. 2, middle right 
panel); however, FLOR underestimates the proportion of 
TC rainfall in Asia and in Australia (Fig. 4, bottom panels).

The climatology of observed TC rainfall during JASON 
is reasonably reproduced in the 12-member seasonal fore-
cast experiments with HiFLOR in Asia and North America 
(Fig. 5, middle panels). In the coastal regions of the Bay 
of Bengal, the seasonal forecast experiments with HiFLOR 
tend to underestimate the climatology of observed TC rain-
fall during JASON, especially in Myanmar and eastern 
India. Overall, the seasonal forecast experiments with FLOR 
underestimate the rainfall associated with these storms dur-
ing JASON, except for eastern India where the values are 
larger than observed (Fig. 5, bottom panels), consistent with 
the overestimation of the TC density by FLOR over this 
region (Figure S3). In North America, HiFLOR outperforms 
FLOR in forecasting the climatology of TC rainfall (Fig. 5, 
right-middle panel). The magnitude and regional patterns of 
this quantity are reasonably well forecasted with HiFLOR, 
while FLOR appreciably underestimates them in North 
America (Fig. 5).

During JFMAM, the climatology of TC rainfall in the 
observations is captured reasonably well in Asia with both 
FLOR and HiFLOR (Fig. 6), with the exception of Myan-
mar. Moreover, the seasonal forecast experiments with 
HiFLOR reproduce quite well the climatology of TC rainfall 
in Australia, while those with FLOR significantly underes-
timate it (Fig. 6, right panels). The performance of FLOR 
and HiFLOR in capturing TC rainfall in seasonal forecast 
experiments is consistent with the capability of the two mod-
els in simulating TC density during JASON and JFMAM 
(Figures S3-4).

The proportion of observed TC rainfall during JASON 
in East Asia bears strong resemblance to that with HiFLOR 
(Fig. 7, middle left panel), even though it underestimates it 
in the Bay of Bengal and the southeastern Indian coast. The 
seasonal forecast experiments with FLOR markedly under-
estimate the fractional contribution of TC rainfall in the 
coastal regions along the Bay of Bengal, but performs even 
better than HiFLOR over eastern India (Fig. 7, bottom left 
panel). In North America, the seasonal forecast experiments 
with HiFLOR outperform FLOR in reproducing the TC frac-
tional contribution (Fig. 7, middle right panel), similar to 
the results for the total amounts (Fig. 5). During JFMAM, 
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HiFLOR and FLOR produce much lower values of the frac-
tional contributions in the Bay of Bengal and along the east-
ern Indian coast, and perform reasonably well in Vietnam 
and the Philippines (Fig. 8, left panels), consistent with the 
results for the TC density (Figure S4). HiFLOR performs 
much better than FLOR in reproducing the observed TC per-
centages in Australia during JFMAM, and this is particularly 
true in eastern Australia (Fig. 8, right panels).

These results have demonstrated the capability of FLOR 
and HiFLOR in reproducing the climatology of TC rainfall 
and its fractional contribution to the seasonal totals in the 
SST-nudging and seasonal forecast experiments. Overall, 
HiFLOR performs better than FLOR in capturing the clima-
tological and regional structures of these quantities, suggest-
ing that high-resolution simulations play an important role 
in a more accurate representation of TC rainfall.

Fig. 3  Climatology of the proportion of JASON TC rainfall to total TC rainfall for the period 1980–2015 in (top) the observations, (middle) 
HiFLOR, and (bottom) FLOR
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3.2  Year‑to‑year variation of TC rainfall and its 
fractional contribution

During JASON, the skill of the correlation coefficient 
between simulated TC rainfall in the SST-nudging experi-
ments with FLOR and HiFLOR and observed TC rainfall 
is low in both Asia and North America, with HiFLOR and 
FLOR showing similar potential skill (Fig. 9). HiFLOR 

has larger conditional and unconditional biases than 
FLOR, particularly in southeast China, Japan and Korea 
(Fig. 9). The unconditional biases can be related to the 
differences in mean storm-specific rainfall (Figure S5, left 
panels); the storm-specific rainfall in HiFLOR is, on aver-
age, larger than in the observations, while FLOR produces 
less storm-specific rainfall than the observations during 
JASON (Figure S5, left panels). The skill scores for TC 

Fig. 4  Climatology of the proportion of JFMAM TC rainfall to total TC rainfall for the period 1980–2015 in (top) the observations, (mid) 
HiFLOR, and (bottom) FLOR
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rainfall in FLOR and HiFLOR in Asia and North America 
are low, with some negative values indicating that the skill 
can be less than climatology (Fig. 9, bottom row).

During JFMAM, the vast majority of Asia is masked out 
because of the low TC density (figure not shown). Over-
all, the potential skill for TC rainfall is low in HiFLOR 
and FLOR, except for West Australia where FLOR shows 
encouraging values of the correlation coefficient (Fig. 10). 

HiFLOR produces larger unconditional and conditional 
biases in northern Australia (Fig. 10, left panels), while 
FLOR produces larger unconditional biases in East Australia 
(Fig. 10, right). The skill score in Australia is also negative 
in both HiFLOR and FLOR (Fig. 10). Consistent with that in 
JASON, the storm-specific rainfall in HiFLOR in JFMAM is 
much larger than in the observations, with FLOR producing 
less storm-specific rainfall than observed (Figure S5, right 

Fig. 5  (Top) observed climatology of JASON TC rainfall (unit: mm), and corresponding seasonal forecast initialized in July for the period 1980–
2015 in (middle) HiFLOR and (bottom) FLOR
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panels), suggesting that the mean biases in storm-specific 
rainfall with FLOR and HiFLOR can help diagnose the rea-
sons for the limited forecast skill.

We examine the proportion of TC rainfall to total precipi-
tation during JASON. Similar to the results for TC rainfall 
during JASON, both FLOR and HiFLOR exhibit limited 
potential skill in Asia and North America (Fig. 11). FLOR 
outperforms HiFLOR in southeastern China and some parts 
of Central America, while HiFLOR outperforms FLOR 

along the eastern Mexican coast. Both FLOR and HiFLOR 
produce large conditional and unconditional biases, which 
lead to very low (negative) skill score for the proportion of 
TC rainfall (Fig. 11).

During JFMAM, HiFLOR and FLOR exhibit potential 
skill for the proportion of TC rainfall in Australia (Fig. 12) 
which is similar to what observed in Fig. 10. HiFLOR has 
smaller conditional biases for the proportion of TC rainfall 
than FLOR in Northern Australia, while the opposite is true 

Fig. 6  (Top) observed climatology of JFMAM total TC rainfall (unit: mm), and seasonal forecasts of the climatology of JFMAM total TC rain-
fall initialized in January for the period 1980–2015 in (middle) HiFLOR and (bottom) FLOR
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for unconditional biases (Fig. 12). Overall, the skill scores 
for the proportion of TC rainfall in Australia are similar (and 
negative) in both models (Fig. 12).

Given the lack of skill in reproducing the interannual 
variability in TC rainfall in the nudged experiments, we 
do not expect to see an improvement when we examine its 
predictability with several month lead times. This expecta-
tion in confirmed in Figures S6–9, where there is limited 

potential skill, large conditional and unconditional biases, 
and an overall negative skill score.

3.3  TC rainfall during El Niño and La Niña years

The analyses so far have focused on the examination of 
the capabilities of FLOR and HiFLOR in reproducing the 
TC rainfall footprint and its interannual variability. Here, 

Fig. 7  (Top) observed climatology of the proportion of JASON TC rainfall, and seasonal forecasts of the climatology of this quantity initialized 
in July for the period 1980–2015 in (mid) HiFLOR and (bottom) FLOR
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instead, we focus on whether these models are able to dis-
criminate between El Niño/La Niña years in terms of TC 
rainfall, and focus on strong El Niño/La Niña events: during 
JASON of 1997 (El Niño year) and 1998 (La Niña year), and 
during JFMAM of 1998 and 1999. During JASON 1997 (El 
Niño developing phase), the TC rainfall in East Asia is sup-
pressed in Japan and Korea and enhanced along the coastal 
regions of the Bay of Bengal (Fig. 13, top left panel). During 
the peak seasons of El Niño developing years, fewer TCs 
make landfall over Japan and Korea than during La Niña 

years (Zhang et al. 2012, 2016b). Although the La Niña (El 
Niño) phase is favorable (unfavorable) for TC development 
in the Bay of Bengal based on observations (Girishkumar 
and Ravichandran 2012; Felton et al. 2013), the TC rainfall 
in North India during JASON 1997 is actually associated 
with a TC making landfall over the eastern coast of India 
(Fig. 13, top left panel). HiFLOR produces more TC rain-
fall in Japan, Korea and South China and less in the coastal 
regions along the Bay of Bengal compared with the observa-
tions. In contrast, FLOR underestimates TC rainfall in South 

Fig. 8  (Top) observed climatology of the proportion of JFMAM TC rainfall, and seasonal forecasts of the climatology of this quantity initialized 
in January for the period 1980–2015 in (middle) HiFLOR and (bottom) FLOR
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China and the coastal regions along the Bay of Bengal, while 
it overestimates it in Japan and Korea (Fig. 11, bottom left 
panels).

In JASON 1998 (developing phase of La Niña), TC 
rainfall is enhanced in Japan, Korea, the Philippines and 
Thailand, and suppressed in the coastal regions along the 
Bay of Bengal compared with JASON 1997 (Fig. 13, top 
right panel). Overall, HiFLOR overestimates the observed 
TC rainfall while FLOR underestimates the observations 
(Fig. 13, right panels). In terms of the El Niño–La Niña 
contrast, HiFLOR captures well the observed differences 
in TC rainfall between them in Japan, Korea, the Phil-
ippines and Thailand, while fails to do so in the coastal 
regions along the Bay of Bengal (Fig. 13, middle pan-
els). FLOR fails to captures the differences in TC rainfall 
between El Niño and La Niña in those regions.

In JASON 1997, TC rainfall is suppressed in the United 
States, while it is enhanced in Central America (Fig. 14, 
top left panel) because of the reduced TC activity. HiFLOR 
reproduces the patterns in the observations in North Amer-
ica (Fig. 14, middle left panel), while FLOR underestimates 
TC rainfall over the regions (Fig. 14, bottom left panel). In 
JASON 1998, there is enhanced TC activity in the North 
Atlantic, with larger TC rainfall values in North America 
than in the previous year; however, compared to the obser-
vations and even HiFLOR, these values in FLOR are much 
smaller and more geographically limited (Fig. 14). There-
fore, the results for FLOR indicate that this model is some-
what able to discriminate between different ENSO years; 
however, the rainfall impacts are much more muted than 
what we see in the observations. This is not the case when 
we consider HiFLOR, which is not only able to discriminate 

Fig. 9  Maps showing potential skill (a, e, i, m), conditional biases (b, f, j, n), unconditional biases (c, g, k, o), and skill score (d, h, l, p) for 
JASON TC rainfall in Asia and North America using the SST-nudging experiments of HiFLOR and FLOR
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the TC response for El Niño/ La Niña years, but can also 
successfully provide information about the associated TC 
rainfall. While these results are strictly valid for these two 
models, they point to the improvements in representing the 
relationship between ENSO and TCs affecting Central and 
North America using the high-resolution model. However, 
FLOR seems to outperform HiFLOR in reproducing TC 
rainfall across much of Central American (e.g., Guatemala, 
Honduras, El Salvador, and Nicaragua) in JASON 1998 
(Fig. 14, left panels).

Australia received little TC rainfall in Western Australia 
during JFMAM 1998, consistent with the strong El Niño 
forcing on TC activity in this region (e.g., Kuleshov et al. 
2008; Ramsay et al. 2008; Dowdy et al. 2012; Chand et al. 
2013). HiFLOR reproduces reasonably well its suppres-
sion in Western Australia and TC rainfall in North Aus-
tralia. However, FLOR dramatically underestimates TC 
rainfall in northern Australia (Fig. 15, bottom left panel). 
During JFMAM 1999, there are larger TC rainfall values 
in western Australia based on observations (Fig. 15, top 

Fig. 10  Maps showing potential 
skill (a, e), conditional biases 
(b, f), unconditional biases (c, 
g), and skill score (d, h) for 
JMFAM TC rainfall in Asia and 
Australia using the SST-nudg-
ing experiments of HiFLOR and 
FLOR
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right panel), consistent with enhanced TC activity during 
La Niña phase (e.g., Kuleshov et al. 2008; Chand et al. 
2013). HiFLOR reproduces the observed enhanced rainfall 
in Western Australia during JFMAM 1999, while FLOR’s 
magnitudes are smaller, even though the rainfall footprint 
is consistent with the observations (Fig. 15, top and bot-
tom right panels). In contrast, HiFLOR overestimates TC 
rainfall in west and central Australia compared with obser-
vations (Fig. 15, top and middle right panels).

4  Discussion and conclusion

While there are multiple hazards associated with TCs, 
large rainfall amounts are responsible for a large num-
ber of fatalities and economic damage. TC rainfall plays 
therefore a critical role to improve our understanding and 
preparedness against this hazard. Although many studies 
have been devoted to the analysis of TC rainfall based 
on observations, little attention has been paid to climate 
model simulations and forecast of this quantity with high-
resolution TC-permitting GCMs. Here, we have examined 
the climatology and interannual variability of TC rainfall 
in the SST-nudging and seasonal-forecast experiments 

Fig. 11  Maps showing the potential skill (a, e, i, m), conditional biases (b, f, j, n), unconditional biases (c, g, k, o), and skill score (d, h, l, p) for 
proportion of TC rainfall during JASON in Asia and North America using the SST-nudging experiments of HiFLOR and FLOR



 W. Zhang et al.

1 3

with the TC-permitting HiFLOR and FLOR coupled cli-
mate models.

We have examined the year-to-year variation of TC 
rainfall and its contribution to the seasonal totals in the 
SST-nudging experiments using HiFLOR and FLOR, 
and quantitatively evaluated the skill in reproducing the 
year-to-year variations in TC rainfall. Overall, HiFLOR 
and FLOR have limited and similar skill in reproducing 

the interannual variability in these two quantities in Asia, 
Australia and North America due to the limited potential 
skill and large conditional and unconditional biases. This 
suggests that the SST forcing does not reproduce the year-
to-year variation in TC rainfall.

Overall, HiFLOR outperforms FLOR in capturing the 
climatology of TC rainfall during JASON in the SST-nudg-
ing and seasonal-forecasting experiments, especially in 

Fig. 12  Maps showing the 
potential skill (a, e), conditional 
biases (b, f), unconditional 
biases (c, g), and skill score (d, 
h) for proportion of TC rainfall 
during JFMAM in Australia 
using the SST-nudging experi-
ments of HiFLOR and FLOR
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East Asia and North America. During JFMAM, HiFLOR 
performs much better than FLOR in capturing its climatol-
ogy of TC rainfall in Australia. However, FLOR tends to 
produce better results than FLOR during JASON in south-
eastern India. Both FLOR and HiFLOR underestimate the 
observed TC rainfall in the coastal regions along the Bay of 
Bengal during JASON and JFMAM because the two models 
simulate much lower TC density than observed.

The SST-nudging and seasonal-forecast experiments of 
FLOR and HiFLOR do not exhibit skill in reproducing the 

year-to-year variation in TC rainfall due to low potential skill 
and large biases. This suggests that these two high-resolution 
GCMs forced by observed SST and radiative forcing cannot 
reasonably reproduce the interannual variability in the rain-
fall associated with these storms. This study has focused on 
TC rainfall over land because most of damages due to TC 
rainfall occur after the TCs make landfall. The interannual 
variability of TC rainfall in the seasonal forecasts depends 
on the interannual variability of TC density. Overall, the 
forecast skill of TC density over the ocean is much better 

Fig. 13  TC rainfall (unit: mm) in Asia based on (top) the observations, (middle) HiFLOR and (bottom) FLOR during JASON 1997 and 1998
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than that over the land (Vecchi et al. 2014; Murakami et al. 
2016). Therefore, the forecast skill of TC rainfall over the 
ocean may outperform that over the land.

In interpreting these results, to be able to forecast 
TC rainfall we need to remember that we would need to 

correctly forecast their genesis, development and tracking, 
and then the rainfall distribution around the center of circu-
lation. All these questions are still quite challenging and the 
subject of research. For example, the shifts in TC genesis 
locations and tracks are common in climate models (Bell 

Fig. 14  TC rainfall (unit: mm) in North America based on (top) the observations, (middle) HiFLOR and (bottom) FLOR during JASON 1997 
and 1998
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et al. 2014; Shaevitz et al. 2014; Vecchi et al. 2014; Daloz 
et al. 2015; Camargo and Wing 2016; Murakami et al. 2015, 
2016; Zhang et al. 2016b), leading to unrealistic simulations 
of TC landfall and consequently of the associated rainfall. 
Recently, HiFLOR appears to simulate the year-to-year 

variation of landfalling TCs better than FLOR (Murakami 
et al. 2015, 2016; Zhang et al. 2016b). The future improve-
ments in these aspects of the TC simulations using climate 
models would lead to improvements in the simulation and 
seasonal forecasts of year-to-year variation of TC rainfall.

Fig. 15  TC rainfall (unit: mm) in (top) observations, (middle) HiFLOR and (bottom) FLOR during JFMAM of 1998 and 1999
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