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Seasonal predictability of baroclinic wave activity
Gan Zhang 1,2,6✉, Hiroyuki Murakami2,3, William F. Cooke 2,3, Zhuo Wang4, Liwei Jia2,3, Feiyu Lu 1,2, Xiaosong Yang 2,
Thomas L. Delworth 2, Andrew T. Wittenberg 2, Matthew J. Harrison2, Mitchell Bushuk2,3, Colleen McHugh2,5, Nathaniel C. Johnson2,
Sarah B. Kapnick2,7, Kai-Chih Tseng1,2 and Liping Zhang 2,3

Midlatitude baroclinic waves drive extratropical weather and climate variations, but their predictability beyond 2 weeks has been
deemed low. Here we analyze a large ensemble of climate simulations forced by observed sea surface temperatures (SSTs) and
demonstrate that seasonal variations of baroclinic wave activity (BWA) are potentially predictable. This potential seasonal
predictability is denoted by robust BWA responses to SST forcings. To probe regional sources of the potential predictability, a
regression analysis is applied to the SST-forced large ensemble simulations. By filtering out variability internal to the atmosphere
and land, this analysis identifies both well-known and unfamiliar BWA responses to SST forcings across latitudes. Finally, we confirm
the model-indicated predictability by showing that an operational seasonal prediction system can leverage some of the identified
SST-BWA relationships to achieve skillful predictions of BWA. Our findings help to extend long-range predictions of the statistics of
extratropical weather events and their impacts.
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INTRODUCTION
Baroclinic waves in the atmosphere and their interaction with the
mean circulation drive everyday weather in the extratropics. Well-
developed baroclinic waves generate surface extratropical
cyclones and upper-tropospheric perturbations. Some most
extreme upper-tropospheric perturbations occur in the form of
Rossby wave breaking (RWB)1, which naturally characterizes the
life cycle of baroclinic waves (LC1 and LC22,3). Similar to the
breaking of ocean surface gravity waves, RWB involves nonlinear
wave deformation and drives irreversible transport of momentum
and substances (e.g., moisture and ozone). When viewed on
weather maps (Fig. 1), LC1-type RWB features an anticyclonic
overturning of potential vorticity (PV) and a progressively
narrowing upper-tropospheric trough, while LC2-type RWB
involves a cyclonic overturning of PV and a broadening upper-
tropospheric trough2,3. Anticyclonic LC1-type and cyclonic LC2-
type RWB can occur separately or concurrently (Fig. 1). In the
midlatitudes and adjacent subtropical/subpolar regions, LC1 and
LC2 events contribute to various high-impact weather events,
such as atmospheric blocking4,5, polar extremes6,7, sudden
stratospheric warming8, atmospheric rivers9,10, and continental
extreme precipitation11. Moreover, LC1 and LC2 events also
interact with tropical cyclones and may affect the genesis, tracks,
and intensity of a tropical cyclone12–16. Collectively, those studies
suggest that baroclinic waves and associated high-impact weather
events have substantial spatial-temporal variations and differ
greatly between LC1 and LC2 events. Although the understanding
of these connections is still evolving, such associations are evident
in recent high-impact weather events and have attracted intense
scientific and public interest (Fig. 1 and Supplementary Table 1
and Note 1).
While skillful long-range probabilistic predictions of tropical

weather events (e.g., hurricane frequency17) are now routinely
issued to assist decision-making, such predictions are largely

elusive for extratropical weather events. The recent exploration of
the subseasonal-to-seasonal predictability of extratropical atmo-
sphere has led to a rapidly growing body of literature. The
relatively high prediction skills reported so far are related to the
large-scale climate modes18–20 (e.g., the North Atlantic Oscillation)
and/or the Eulerian statistics (e.g., storm tracks indicated by sea-
level pressure variance)21–23. Although the predictions of large-
scale climate modes and Eulerian statistics are useful, they do not
fully characterize weather events experienced by societies and
ecosystems. When weather events (e.g., extratropical cyclones) are
explicitly considered, the reported prediction skills of event
statistics often focus on specific seasons or regions and are
generally low to moderate24–26. Perhaps surprisingly, the funda-
mental driver of extratropical weather events—baroclinic waves
and related wave-circulation interaction—has received little
attention in the existing studies of climate modeling and
predictability. The lack of such investigation makes it difficult to
address important questions such as whether any potentially
predictable signals remain undiscovered.
In the weather and climate research communities, a widely

shared notion is that long-range predictions (>2-week lead time)
of individual baroclinic waves are not particularly promising.
Baroclinic waves develop from potential energy conversion and
are governed by the nonlinear dynamics of the midlatitude
atmosphere. As illustrated by Lorenz27, the evolution of a
nonlinear dynamical system is sensitive to initial conditions, and
this sensitivity limits the deterministic predictability of midlatitude
weather to ~2 weeks28. In comparison, climate predictions of
weather events are intrinsically probabilistic and mainly rely on
slowly varying boundary forcings. These boundary forcings—such
as sea surface temperatures (SSTs)—are predictable beyond two
weeks and strongly regulate the tropical atmosphere27. Although
such forcings do not strongly constrain the extratropical atmo-
sphere29,30, observational studies showed that predictable climate
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modes (e.g., the El Niño–Southern Oscillation) modulate the
distribution and occurrence probability of baroclinic waves9,31–35.
Idealized baroclinic wave simulations also established that wave
life cycles are sensitive to the background environment (e.g., wind
shear2,3 and stratospheric conditions36). As large-scale environ-
mental factors are partly predictable beyond 2 weeks, the existing
evidence thus implies long-range predictability of the statistics of

LC1 and LC2 events (hereafter baroclinic wave activity, BWA)31.
However, it remains unclear under what circumstances such
predictability exists and to what extent it can be capitalized by
climate models in the form of useful predictions.
A long-standing obstacle to exploring the predictability of BWA

is the weak responses of the extratropical atmosphere to climate
forcings (e.g., SST forcings)29,30. This obstacle manifests as low

Fig. 1 Observed LC1- and LC2-type life cycle of baroclinic waves. The left column a–d shows the schematics derived from a real-world
baroclinic wave. The upper-level contours show 350-K potential vorticity, the surface contours show sea-level pressure, and the blue shading
shows column integrated water vapor. The wave is associated with a surface low (L) that develops (a, b) and moves poleward (c). The upper-
level flow shows in LC2-type RWB in the Northwest and LC1-type RWB in the Southeast (c). This event contributed to an atmospheric river
(dark blue plume) (c), a strong surface cyclone (c), and an upper-level blocking pattern (detached dark red feature) (d). The right two columns
provide additional wave cases. Color shading shows 2-m air temperature (unit: K) and total column water (unit: mm), respectively. Black
contours show 350-K potential vorticity (PV), while white contours denote small-scale PV features. The PV contours are ±1.5 PVU in subtropical
cases and ±7 PVU in mid-/high-latitude cases. e, f LC1 event contributing to an atmospheric river landfall that ended a multi-year drought in
California. g, h LC1 event steering weakened Hurricane Florence to the U.S. i, j LC1 event contributing to record-breaking heatwaves in Central
Europe and Southwest Asia. k, l LC1 event contributing to a record-breaking heatwave in Southern Australia. m, n LC2 event (near 30°W) and
LC1 event (near 15°E) contribute to extreme Arctic warming and a cold air outbreak in Europe. o, p LC2 event (near 160°W) and LC1 event
(near 130°W) contribute to an Antarctic warm extreme event and ice melting.
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signal-to-noise (S/N) ratios of forced atmospheric responses
(signals) and unforced atmospheric variability (noise). For statis-
tical predictions based on empirical relations, a low S/N ratio
makes it difficult to capture the physical and dynamical structures
in observational data, especially when the observation records are
limited. For dynamic predictions based on global climate models,
a low S/N ratio necessitates the use of resource-intensive
ensemble simulations to extract seasonally predictable signals in
the chaotic climate system and to adequately sample the
uncertainties associated with unforced climate variability. Yet
current climate models sometimes suffer from artificially low S/N
ratios of potentially predictable signals19,37, so simulations with an
unusually large ensemble size are likely essential for exploring the
predictability of BWA.
An emerging tool for differentiating forced climate responses

from unforced variability is large ensemble simulations with
perturbed initial conditions38. Here, we explore the potential
seasonal predictability of BWA using observational data (see
“Observational data”) and large ensemble simulations with
prescribed SST forcings (see “SST-forced large ensemble simula-
tions”). The prescribed SST forcings closely follow the historical
SST observations but include small deviations that account for
observational uncertainties and ocean mesoscale eddies. This
prescribed-SST approach differs from the other contemporary
large ensemble simulations that use free-running coupled climate
models. At the cost of more realistic atmosphere-ocean coupling,
the prescribed-SST approach has two advantages for studying
SST-related predictability29. First, coupled models generate a
substantial dispersion of oceanic states38 that deviate from the
historical observations within the first few simulation years. This
dispersion makes it difficult to validate the free-running climate
simulations against the observed variations of BWA. Second, the
prescribed-SST approach greatly reduces the computational
resources needed for ocean simulations and enables an excep-
tionally large ensemble of high-resolution atmospheric simula-
tions. This feature is useful for simulating atmospheric dynamics
and revealing SST-forced responses of BWA—even if their S/N
ratios are low.
This study leverages these advantages of the aforementioned

SST-forced simulations to probe the potential seasonal predict-
ability of BWA. With a focus on the S/N ratio of the regional counts
of LC1 and LC2 events, we estimate the potential BWA
predictability when SSTs are assumed to be perfectly ‘predicted’
(i.e., prescribed with observed values). This estimate of the
potential BWA predictability is conducted throughout the year
and around the globe. Even though this examined climate model
lacks the capability of delivering operational forecasts, we manage
to confirm the predictability of BWA using an independent
operational prediction system that can skillfully predict SSTs.
Compared to previous operating systems developed by the U.S.
National Oceanic and Atmospheric Administration (NOAA), this
prediction system has greatly reduced oceanic biases39 and
simulated tropical–extratropical teleconnections with better fide-
lity40. Our analyses of this system suggest useful and sometimes
exceptional seasonal predictability of BWA. The findings establish
a scientific basis for using climate models to conduct long-range
predictions of the statistics of extratropical weather events and to
develop an event-based understanding of extratropical variability.

RESULTS
Large ensemble simulations indicate potential seasonal
predictability
The large ensemble simulations (d4PDF) incorporate climate
boundary forcings (e.g., SST and greenhouse gases) and produce
realistic atmospheric circulation and weather events41–44. With
respect to the distributions of baroclinic waves (see “Classification

of baroclinic wave life cycle”), a comparison between the
observation (Fig. 2a–d) and model climatologies (contours in
Fig. 2e–l) suggests that the simulation generates too few LC2 events
at high latitudes (e.g., the North Atlantic during January–March).
The LC2 underestimate appears consistent with the fact that
climate models commonly underestimate the frequency of atmo-
spheric blocking45–47 (which are often LC2-related). Nonetheless,
the seasonal cycle and spatial distribution of LC1 and LC2 events in
the simulation are realistic overall. For example, LC1 events mostly
occur at lower latitudes relative to LC2 events, especially near
strong midlatitude westerlies. Additional composite analysis of
individual events also suggests that key wave breaking features are
well simulated (Supplementary Fig. 1 and Supplementary Note 2).
The model fidelity establishes the foundation for the ensuing
predictability analysis, which will use the frequency of LC1 and LC2
features to characterize BWA. In comparison with the commonly
used Eulerian statistics22,23, this approach helps to highlight
dynamic features involved in weather events.
A necessary condition for skillful seasonal predictions is that

forced responses of a predictand have high S/N ratios, especially
in the real-world dynamical system29. We characterize the S/N
ratio in our model simulation and the observation using the
predictable component (PC) metric19,20 (see”Predictability analy-
sis”). The essence of this PC metric is the square root of the
predictable fraction of the total variance. This metric is defined
differently for ensemble simulations and observation. For a model
system, PCmod is approximated using the following expressions

PCmod ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
sig=σ

2
tot

q

(1)

where σ2
sig is the temporal variance of the model ensemble mean,

and σ2
tot is the average of the temporal variance of individual

ensemble members. For observations, PCobs is approximated as
the temporal Pearson correlation (r) between the observation and
the ensemble mean. A comparison of PCobs and PCmod can
distinguish whether a model is overconfident (PCobs < PCmod) or
underconfident (PCobs > PCmod) in its predictions.
Before proceeding to the PC results, we make several

clarifications that help with the interpretation. To reduce possible
confusion between PCobs and PCmod, we refer to PCobs mainly as
the ‘skill’ of simulating or predicting year-to-year variations and
reserve the term PC for PCmod. Also, the ensuing analysis of these
two metrics uses three-month periods starting in January, April,
July, and October instead of the standard seasons. This choice is
made based on a data availability issue related to System for
Prediction and EArth System Research (SPEAR) (see “SPEAR
seasonal prediction experiments”), and we have verified that this
choice does not qualitatively affect the findings of PCs. Finally, the
PC analysis of the SST-forced simulations seeks to quantify the
fraction of BWA variance that can be explained by SST variability.
Although SST variability can be skillfully (though not perfectly)
predicted on the seasonal scale and tends to be the leading
source of atmospheric seasonal predictability29, the SST forcings
here are not model predictions but prescribed observations.
Therefore, PCmod of this set of simulations only helps to infer the
SST-related “potential predictability”.
Figure 2e–l shows the PCs of the year-to-year variations of

LC1 and LC2 frequency, respectively. High values of the PC
metric appear in regions with BWA but do not follow the
maxima of BWA closely. The PC metric of LC1 events shows
high values in the subtropics throughout the annual cycle
(Fig. 2e–h). These high values suggest year-to-year variations of
these LC1 events are strongly regulated by SSTs and other
prescribed climate forcings. For LC2 events, high PC values
appear in the deep tropics (Fig. 2i–l), but these high PCs are
related to PV features of simulated tropical convection instead
of mid-latitude baroclinic waves. At higher latitudes, the PC
values of LC2 events show a strong seasonal and regional
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dependence. While the PC values are generally low, a notable
high-PC region appears during January–March extending from
North America and the North Atlantic (Fig. 2i). Interestingly, this
region partially overlaps with the regions where the Pacific-
North America pattern and the North Atlantic Oscillation are
active33,48,49, suggesting potential predictability of related
wave-circulation interactions.
Motivated by the high-impact events in Fig. 1 and their spatial-

temporal distributions (Fig. 2a–d), we further analyze the potential

seasonal predictability of BWA in selected regions (red boxes in
Fig. 2e–l). While the highest PCmod and best simulation skills are
generally associated with subtropical LC1 events, the discussion
here covers both warm-season LC1 events in a low-latitude region
(N-ATL LC1) and cold-season LC2 events in a high-latitude region
(N-PAC LC2). Our focus on these events prioritizes a balanced
evaluation of LC1 and LC2 events that affect North America in
different seasons. This choice also helps to show model strengths
and weaknesses, as will be discussed later. Readers interested in

Fig. 2 Climatology and predictability metrics of baroclinic waves in d4PDF simulation. a–d Climatology of 200-hPa zonal wind (m s−1;
shading) and the observed spatial distributions of LC1 (red contour) and LC2 (blue contour) events during 1979–2010. The contoured
distributions are BWA as represented by the counts of PV features in gridded boxes (see “Classification of baroclinic wave life cycle”). These
counts are sums during a January–March, b April–June, c July–September, and d October–December. The contours levels are 4 and 10 events
season−1, and the latter only shows up with LC1 events as small and enclosed regions. e–h Climatology (black contours) and predictable
components (PCs from Method e) (unitless; shading) of LC1 events as simulated by the SST-forced experiments. i, l Same as (e–h), but for LC2
events. The climatology of BWA in (e–l) shares the same contour levels as (a–d). The PC values are omitted from shading in regions with low
BWA (<0.5 events season−1). The red boxes indicate the individual regions examined separately later. m PCs of the July–September event
count of N-ATL LC1 (10–30°N, 45–85°W) as a function of the ensemble size. Red shows the model PCs estimated with the SST-forced large
ensemble, and blue shows the correlation skills (i.e., PCobs) of the same simulation. The boxplots indicate 2.5th, 25th, 50th, 75th, and 97.5th
percentiles of metrics, determined from the bootstrapping technique. The black dashed line indicates the 5% significance level of the
correlation coefficient. n is the same as (m), but for the PCs of the January–March event count of N-PAC LC2 (40–70°N, 110–170°W).
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the other individual regions can refer to Supplementary Notes 3
and 4 for additional results.
The PC estimates are sensitive to unforced noises within

ensemble members19,50, so we use bootstrapping to evaluate the
metrics’ sensitivity to the ensemble size (see “Predictability
analysis”). Figure 2m, n shows PCmod and the simulation skill
(i.e., PCobs) as a function of the ensemble size. A comparison of the
estimated PC and prediction skill yields interesting insights. For
example, the estimated PC and prediction skill show an opposite
dependence on the ensemble size. This dependence can be
explained as follows: an insufficient ensemble size allows more
noise to enter the ensemble mean terms in PCmod and PCobs,
resulting in an overestimate of the potential predictability (noise
being misinterpreted as signals) and an underestimate of
simulation skill (signals being contaminated by noise). This
dependence suggests seasonal predictions of BWA need relatively
large ensembles, which have been also shown helpful in the PC
analyses19 and seasonal predictions of other phenon-
mena20,21,51,52. The ensemble size required to reliably extract the
SST-forced signal varies across regions and types of baroclinic
waves (Supplementary Figs. 2 and 3). In most of the examined
circumstances, the skill dependence on the ensemble size does
not weaken notably until the ensemble size increases to 15–25,
indicating that an ensemble with at least 15 members is likely
necessary for investigating BWA predictability.
Another interesting feature in Fig. 2m–n is that the simulation

skill is overall below the potential predictability suggested by the
PC values. This behavior is not limited to the N-ATL LC1 and N-
PAC-LC2 (Supplementary Figs. 2 and 3). It suggests this climate
model is generally overconfident in simulating year-to-year

variations of BWA, which contrasts with the underconfident
behavior of climate models in predicting certain large-scale
Eulerian means19,37. We speculate that this overconfident issue
in our analyses could arise from model biases or missing physical
processes. For example, prescribing SSTs distorts air-sea fluxes that
enter the atmosphere and can affect the development of
baroclinic waves (e.g., location and strength) in subtle ways.
Moreover, the ensemble SSTs closely follow the observation
(Supplementary Fig. 4) and their spread does not account for
unforced variability of a coupled climate system. Such a small SST
spread could pose an additional and unrealistic constraint on the
variability of air-sea fluxes. All other conditions being equal,
these issues likely lead to an under-dispersive53 and somewhat
biased54 simulation of the atmosphere. Meanwhile, the climate
model examined here––if run with the atmosphere-ocean
coupling––could still suffer from a deficiency in simulating realistic
S/N ratios of large-scale Eulerian means as other models19,55.
Despite these limitations, the analysis here suggests that SST
forcings can help to simulate realistic year-to-year variations
of BWA.

Oceanic contributors to potential seasonal predictability
The year-to-year variations of SST forcings and BWA are overall
realistic in the SST-forced large ensemble simulations (e.g.,
Supplementary Fig. 4). Since averaging over a large ensemble
helps to filter out unforced variability, a simple linear regression
between BWA metrics and SST forcings can offer insights into their
connections (Fig. 3a, b). For N-ATL LC1 and N-PAC LC2 events, the
model-based results from linear regression are consistent with

Fig. 3 Relationships between baroclinic waves and surface temperature in d4PDF simulation. a, b Linear regression (color shading) of
ensemble-mean surface temperature (K) onto ensemble-mean BWA (standardized) during 1979–2010. The ensemble-mean BWA of a N-ATL
LC1 and b N-PAC LC1 (red boxes) are event counts that are standardized based on year-to-year variations. Hatching in a, b indicates the linear
relationship is below 95% confidence determined from a non-directional t-statistics. c, d Linear correlations between regional surface
temperature and BWA. The surface temperature metrics are SSTs of the tropical North Atlantic (TNA; 10–25°N, 20–80°W) and the midlatitude
North Pacific (NP40; 30–50°N, 130°E–160°W) for c N-ATL LC1 events; and the SST of Niño 3.4 region (120–170°W, 5°S–5°N) and the midlatitude
North Pacific (NP30; 20°–40°N, 170°E–140°W) for N-PAC LC2 events. The boxplots indicate 2.5th, 25th, 50th, 75th, and 97.5th percentiles of
correlations in individual ensemble members. Dots and stars show the correlations of the ERA-Interim reanalysis and the ensemble means,
respectively. The black dotted line shows the 5% significance level determined from the t-statistics. The horizontal axis denotes results from
January–March, April–June, July–September, and October–December.
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some observed relationships between BWA and SST forcings. For
example, the N-ATL LC1 events occur more frequently with cold
SSTs in the tropical North Atlantic35 and correspond to the cold
phase of the Atlantic Multidecadal Variability16. Meanwhile, the
N-PAC LC2 events occur more frequently during the El Niño
years9,31,33. While these BWA-SST connections and teleconnection
mechanisms have been established by earlier observational
studies, the analyses here (and in the next subsection) present
evidence suggesting that climate models can simulate these
connections with some fidelity.
The linear regression also suggests interesting but less familiar

connections. For example, the N-ATL LC1 events are negatively
correlated with the global skin temperature in July–December,
suggesting a potential connection between climate warming and
the N-ATL LC1 events. The regression map also suggests that the
N-ATL LC1 events are negatively correlated with SST near the
oceanic frontal zone in the midlatitude North Pacific with a high
statistical significance (p < 0.05). This appears consistent with
observational evidence that suggests the North Pacific weather
patterns modulate the N-ATL LC1 events35. Although currently, we
cannot rule out that this significant correlation might arise from
co-existing tropical SST forcings (e.g., the Indian Ocean and the
Western Pacific; Fig. 3a), recent studies with high-resolution
atmospheric models do suggest that SST variability at the oceanic
front of the Kuroshio Current can influence the downstream
extratropical atmosphere56,57, which has implications for both
North America and Europe. Interestingly, the existing studies
focused on the wintertime and mechanisms involving changes in
the atmospheric baroclinic zone56 or flux exchange from oceanic
mesoscale eddies57. However, whether and how such mechanisms
might operate in the summertime received little attention. Such
unfamiliar relationships are abundant (Supplementary Figs. 5 and
6) and involve factors including the mid-latitude SSTs and high-
latitude land temperatures. They present opportunities for future
modeling and mechanism research, which will likely complement
existing studies on the relationship between baroclinic waves and
large-scale oceanic modes33,35,58,59.
To validate the above SST-BWA relationships, Fig. 3c, d further

examines these selected linear relationships throughout the year.
Despite the strong seasonality of these relationships, the signs of
the observed relationships were correctly represented by the
large ensemble simulations. In thirteen out of sixteen boxplots
(Fig. 3c, d), the observed correlation coefficients fall within the
95% confidence range of the large ensemble simulations. This
consistency between the SST-forced simulations and the
observation suggests that the impacts of SSTs on N-ATL LC1
and N-PAC LC2 events are generally credible. Meanwhile, two of
the out-range cases happen with the N-PAC LC2 events during
JFM, with the model overestimating the strength of correlations.
Relationship distortions like this could arise from model
deficiency or the experiment design (e.g., prescribing SST) (see
“SST-forced large ensemble simulations”). This issue and low S/N
ratios (as suggested by PCmod) likely make it more challenging to
simulate and predict the seasonal counts of LC2 events
(Supplementary Fig. 3).
Interestingly, Fig. 3c, d also suggests that averaging over a large

ensemble might clarify the connections between SST forcings and
atmospheric responses. The correlations of ensemble means are
generally stronger than those in individual ensemble members.
Since some SST forcings and large-scale atmospheric responses
can be skillfully predicted on the seasonal scale60, these
connections suggest that BWA may be predictable in some
regions and seasons. Nonetheless, one should recognize that the
strong correlations exhibited by the ensemble means of SST-
forced simulations do not necessarily imply high skill of real-world
predictions, in which the SSTs need to be predicted rather than
‘prescribed’. Such predictions are far from perfect since observed

quantities inevitably contain unforced variability. Moreover,
prediction models contain various biases and errors.

Prediction skill in an operational prediction system
Encouraged by the findings from the SST-forced large ensemble,
we continue to explore whether skillful predictions of BWA are
feasible in real-world operation. It would be ideal to proceed with
a prediction system built on the identical atmospheric model.
However, such a prediction system is currently unavailable. For
individual climate modeling centers, the resource and expertise
needed to run both large-ensemble simulations and operational
seasonal predictions are still prohibitively high. Therefore, we
instead explore the real-world prediction skill using the SPEAR39,40,
which simulates a realistic climatology and skillfully predict
variations of the ocean and atmosphere39,40. The SPEAR can serve
as an independent test of the potential seasonal predictability of
BWA. More details on SPEAR and its performance are available in
“SPEAR seasonal prediction experiments” and references therein.
Due to computational resource constraints, initial retrospective
prediction experiments with SPEAR use a medium ensemble size
(N= 15). An ensemble size of this magnitude likely can extract
some SST-forced responses of BWA (Fig. 2). The ensemble
experiments cover a recent period (1995–2018), which partially
overlaps with the SST-forced large ensemble simulations. The
following analysis focuses on the prediction of the first three
months after model initializations, for which the SST predictions
are skillful in the tropics (Supplementary Fig. 7) due to the large
thermal inertia of the ocean and the relatively realistic model
representation of physical processes39,40.
Besides producing relatively realistic climatologies (Fig. 4a–h)

and dynamic structures (Supplementary Fig. 1) of LC1 and LC2
events, the PCs of SPEAR also show the potential seasonal
predictability of BWA (Fig. 4a–h). The PC patterns in SPEAR are
overall similar to those of the SST-forced large ensemble (e.g.,
relatively high PC values of subtropical LC1 events). Although
SPEAR might appear to have higher PC estimates (cf. Figs. 2 and 4),
this PC difference should be interpreted with caution. A large
portion of this difference can be attributed to the PC estimates’
dependence on ensemble size (Fig. 2m, n) and the non-stationarity
of the climate system’s predictability61,62. After the differences in
ensemble size and analysis period are controlled, the PC
differences between SPEAR and the SST-forced ensemble reduce
substantially (Supplementary Figs. 8 and 9). The remaining
differences can be partly attributed to SPEAR’s observation-based
initial conditions of land/atmosphere components, which help to
constrain the Month 1–3 predictions. For the Months 1–3 period,
we also speculate that SPEAR’s atmosphere-ocean coupling (see
“SPEAR seasonal prediction experiments”) provides useful con-
straints on ensemble spreads. For example, atmosphere-ocean
coupling prevents the unbounded air-sea heat fluxes in SST-forced
simulations and might reduce the error growth associated with
atmospheric eddies (e.g., near oceanic western boundary currents).
Although these model differences complicate the inter-model
comparison, the basic comparison here helps to qualitatively probe
the robustness and uncertainties of our findings of the potential
seasonal predictability of BWA.
Figure 4i, j shows that SPEAR’s high PC values can translate to

skillful predictions of BWA. For example, the predictions of N-ATL
LC1 events are skillful throughout the year, including the Atlantic
hurricane season; and the predictions of N-PAC LC2 events are
highly skillful for January–March when the LC2-related weather
patterns can strongly affect Alaskan rainfall and North American
temperature. Additionally, highly skillful predictions are available
for LC1 events over the subtropical Pacific (Supplementary Figs. 10
and 11), which are important processes for activities of atmo-
spheric rivers10 and tropical cyclones16. LC1 and LC2 events are
also linked to wintertime atmospheric blocking4,5, which can be
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Fig. 4 Predictable components (PCs) and prediction skills of baroclinic waves in SPEAR prediction. a–d PCs of LC1 events in three-month
predictions that are initialized on the 1st of January, April, July, and October of 1995–2018. e–h Same as (a–d), but for LC2 events. i PCs (red)
and prediction correlation skills (blue) of the N-ATL LC1 events for the four above initialization months. j Same as (i), but for N-PAC LC2 events.
The other plot settings are the same as in Fig. 2.
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interpreted as successive or persistent wave-breaking events.
SPEAR’s prediction skills for LC1 and LC2 events appear consistent
with a current European system’s prediction skill for wintertime
blocking events63, both showing relatively high skills at lower
latitudes and relatively poor skills at higher latitudes. We also note
that SPEAR’s prediction skills for BWA averaged over large regions
are generally higher than the skills for small regions. This might be
because the S/N ratio is lower on smaller scales (cf. PC values), and
small-scale signals are also more sensitive to model biases (e.g.,
displaced midlatitude jets).
Lastly, we briefly discuss factors that contribute to SPEAR’s skills

in predicting BWA. Besides skillfully predicting SSTs in Months 1–3
(Supplementary Fig. 7), SPEAR is also skillful in predicting the
500-hPa geopotential height (Z500) in the tropics and some mid-/
high-latitude regions (Supplementary Fig. 12). SPEAR’s PCmod and
correlation skills of Z500 also show a latitudinal dependence,
which is overall consistent with other prediction systems64. This
latitudinal dependence is similar to BWA, suggesting that SPEAR’s
prediction skills of LC1 events partly arise from the low-latitude
atmospheric circulation. However, the prediction skills of Z500 and
BWA are not always aligned. For example, the prediction skill of
January–March Z500 is close to zero near the Gulf of Alaska
(Supplementary Fig. 12), while the predictions for N-PAC LC2
events are moderately skillful (Fig. 4j). Notably, another state-of-
the-art model shows little skills in predicting wintertime atmo-
spheric blocking in the roughly same region63. SPEAR’s skill in
predicting BWA appears to mostly arise from its prediction of
tropical SSTs (esp. the ENSO; Supplementary Figs. 13 and 14). The
relationship between BWA, SSTs, and the large-scale circulation
warrants future investigation (Supplementary Note 5). Lastly,
SPEAR’s prediction skills for Months 1–3 likely have benefited from
the land-atmosphere initial conditions. Preliminary analyses
suggest that SPEAR’s skills exist in longer-lead predictions but
degrade relatively fast for LC2 events, indicating the skills’
sensitivity to initial conditions.

DISCUSSION
Despite a common expectation of relatively low skill of climate
models in long-range predictions of extratropical weather
statistics25,29,30, this study demonstrates that promising seasonal
predictability of event-based BWA may exist in certain regions
and seasons—and that such predictability can be (partly)
capitalized with a state-of-the-art prediction system. Though the
discussion in the main text focuses on BWA in two regions,
seasonal predictability and skillful predictions are present in
various seasons and regions, especially for LC1 events that are
important for high-impact weather at the tropical–extratropical
interface. Further work is needed to better quantify the prediction
skill with different time leads and in a non-stationary climate
system.
Meanwhile, the climate models examined here suggest some

potential gaps between potential predictability (PCmod) and actual
prediction skills (PCobs). Understanding these potential gaps and
their underlying physical processes should be priorities for future
research. For example, the model skills for simulating and
predicting LC2 events are notably poorer than LC1 events, but
PCmod hints at a possibility that the potential predictability of both
LC1 and LC2 events has not been fully capitalized. Existing studies
suggest these events (and associated blocking events) involve
baroclinic development2 and contributions from diabatic pro-
cesses65,66. Future process-based analyses built on this study
might provide additional insights. The prediction of these events
might also be improved via a continuing commitment to
improving climate models (e.g., refining model initialization,
resolution, and physics63).
Our analysis also highlights the benefits of using a large

ensemble to filter out unforced variability in climate simulations.

This helps to identify some unfamiliar relations between extra-
tropical SSTs and BWA, which point to opportunities for future
research. The findings suggest that an inadequate ensemble size
tends to overestimate PCs and underestimate prediction skill (e.g.,
Fig. 2m, n), which might hinder the exploration of extratropical
predictability. The need for a large ensemble is more pressing if a
climate prediction system underestimates the S/N ratio19,20. For
example, recent studies suggest an underestimation of the S/N
ratio might be common among climate models, at least for a key
climate mode (i.e., the North Atlantic Oscillation)37,55.
Finally, the findings of the BWA predictability have important

implications for predicting statistical aspects of extratropical
weather events beyond the 2-week timescale. Our analyses
support the use of climate models in studying prediction problems
of this nature. By delineating the seasons and regions with high S/
N ratios of BWA, our results provide key information that guides
future explorations of predicting extratropical weather events and
their impacts. Successful examples that involve the prediction of
atmospheric rivers and heat waves will be provided in upcoming
studies. We hope that our findings will motivate improvements in
extratropical predictions and applications of climate models.

METHODS
Observational data
The primary use of observational data in this study is simulation
verification. We use monthly and 6-hourly data from the ERA-Interim
reanalysis produced by European Center for Medium-Range Weather
Forecasts67. To facilitate data processing and model verification, we
coarsen the 6-hourly data to a 2.5° horizontal grid. The coarsened data is
fed to an automatic detection algorithm to identify LC1 and LC2 events
(see “Classification of baroclinic wave life cycle”). We analyze the data from
1979–2018 and examine its subsets when model simulations cover only
part of this period. Another observational dataset is the Hadley Center
Global Sea Ice and SST (HadISST v 1.1)68. The HadISST dataset is used to
verify the relationship between SST forcings and the BWA simulated by
models. Several other observational datasets were also utilized in the
model simulations and will be briefly introduced in the following sections.

SST-forced large ensemble simulations
The SST-forced large ensemble simulations (d4PDF)69 are conducted using
Meteorological Research Institute (MRI) atmospheric general circulation
model (AGCM) version 3.2H70, which has ~60 km horizontal grid spacing
and includes 64 vertical levels. This study uses the historical subset of the
large ensemble simulations. In the historical simulation, the AGCM is
integrated from 1951 to 2010 with the observed forcings, including
anthropogenic forcings (e.g., aerosols and greenhouse gases) and time-
varying monthly SST and sea ice information from the Centennial in-situ
Observation Based Estimates of SST version 2 dataset (COBE-SST271). The
SSTs in COBE-SST2 and HadISST are mostly consistent despite some
differences (Supplementary Note 4 and Fig. 4). To generate a large number
of ensemble simulations, the initial conditions of the climate system were
randomly perturbed when the model is initialized around 1951.
Furthermore, the SST forcings include random but autocorrelated
perturbations of up to 30% of the observed interannual variability
throughout the integration69. The magnitudes of these perturbations vary
across regions (Supplementary Fig. 4) and intend to account for
observational uncertainties. The simulation consists of 100 ensemble
members, greater than most existing large ensemble simulations38. Other
model settings are documented in detail by Mizuta et al.69.
Besides the prescribed SSTs and unusually large ensemble size, our

choice of d4PDF also considers its relatively high spatial resolution and
high-frequency model outputs that are uncommon for large ensemble
simulations. A lack of realistic atmosphere-ocean coupling prevents this
SST-forced large ensemble simulations from fully sampling unforced
variability in the coupled climate system. Nonetheless, this SST-forced
approach helps to isolate the atmospheric response to SST forcings via the
ensemble mean, while deviations from the ensemble means can serve as a
proxy for the unforced variability of the atmosphere38. With the
assumption that this simulation reasonably characterizes the variability
of historical climate, the observations should be approximately equivalent
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to a climate realization of the large ensemble simulations. Therefore, the
observed quantities and relationships should generally fall within the
envelope of the ensemble members (as illustrated by Fig. 3c, d and
Supplementary Fig. 4).

SPEAR seasonal prediction experiments
The Seamless SPEAR is the next-generation coupled modeling system
developed by Geophysical Fluid Dynamics Laboratory (GFDL) for seasonal
to multi-decadal prediction and projection. The atmosphere and land
components are identical to those in the GFDL AM4-LM4 model72, while
the ocean and sea ice components are the MOM6 and SIS2 models,
respectively73. SPEAR is closely related to the CM4 coupled GCM, GFDL’s
contribution to Coupled Model Intercomparison Project phase 6 (CMIP6),
although different resolutions are used in the various model components.
The present study uses the medium-resolution SPEAR version
(SPEAR_MED) that has an atmospheric and land horizontal grid spacing
of ~50 km, with 33 atmospheric levels. The ocean and sea ice components
use a tripolar grid with a nominal horizontal grid spacing of 1° with
meridional refinement to 1/3° in the tropics. The SPEAR components and
the performance of its control, historical, and scenario experiments are
documented in detail by Delworth et al.40.
The SPEAR seasonal predictions are initialized from a combination of

ocean data assimilation and atmospheric nudging experiments. Besides
helping to initialize the model atmosphere, the atmospheric nudging also
provides observational constraints for land and sea ice via the land/
ice–atmosphere coupling. We analyze the SPEAR retrospective predictions
initialized on the first day of January, April, July, and October during
1995–2018. Each prediction consists of 15 ensemble members and covers
12 months after model initialization. The retrospective prediction
experiments are being extended in preparation for routine forecast
implementation at the U.S. NOAA. Preliminary analysis of the extended
experiments suggests the model performance is consistent with the
experiments analyzed in the present study. The climatological SST bias of
the SPEAR predictions is small, due to improved model physics and newly
adopted oceanic bias corrections39. The bias corrections were conducted
online during model integration by introducing three-dimensional and
annually varying terms of ocean tendency adjustment (OTA). These terms
were estimated by ocean data assimilation experiments in a coupled
model with a free-running atmosphere. The OTA helps to substantially
reduce SPEAR’s SST biases relative to the previous GFDL climate models.
Moreover, SPEAR’s atmosphere resolution is relatively high compared to
the current global climate models (50-km vs. 100–200 km grid spacing).
The relatively low model biases and high atmosphere resolution are
beneficial for dynamical simulations of weather events. Details of the
initialization and performance of the SPEAR seasonal predictions are
documented in Lu et al.39.

Classification of baroclinic wave life cycle
The classification of baroclinic wave life cycles emphasizes RWB features,
which correspond to the mature and nonlinear life stage of baroclinic
waves. During the wave development, RWB features are dynamically
coupled with near-surface features (e.g., extratropical cyclones and frontal
systems) and are characterized by meridional reversals of PV contours2.
The meridional overturning is associated with air masses that rotate
anticyclonically for LC1 events or cyclonically for LC2 events2. We use the
RWB identification algorithm described by Strong and Magnusdottir49 but
implement the code in the open-source Python language using a more
efficient numeric search method. The updates help to process an
extremely large volume of simulation data (>100 TB).
We analyze the PV on the 350-K isentropic surface that approximately

corresponds to the upper troposphere and/or the lower stratosphere
(depending on the latitude), where Rossby wave activity is relatively
strong. The choice of analyzing the 350-K PV is consistent with earlier
studies10,13,49,58, and we acknowledge that RWB distributions depend on
vertical levels and vary across isentropic surfaces. The search for RWB is
conducted on the PV contours ranging from 1 to 30 PVU for the Northern
Hemisphere (or −1 to −30 PVU for the Southern Hemisphere) at 0.5-PVU
intervals (1 PVU= 10−6 K kg−1 m2 s−1). When features from adjacent PV
contours appear in each other’s vicinity, the search algorithm assumes
that the features are related to the same breaking wave and only retains
the feature with the largest spatial extent. The algorithm also discards
small and isolated PV features, such as those denoted with white contours
in Fig. 1. While these variable and parameter choices likely affect some

aspects (e.g., climatology numbers) of the tracked LC1 and LC2 features,
we expect their year-to-year variations to be less sensitive to the
algorithm design.
Despite the noisy nature of the observational data, the composites of

identified RWB (Supplementary Fig. 1) resemble the RWB features (e.g.,
high-PV and low-PV tongues) described in previous studies of baroclinic
wave life cycle2,3. Although BWA can be characterized using Eulerian-based
metrics, this study uses the frequency of LC1 and LC2 events to focus on
the dynamical features that often drive weather extremes. We count the
centroids of these PV features (which correspond to the coordinate centers
in Supplementary Fig. 1) in 5° grid boxes within 3-month periods. To
reduce the counting complexity, PV features in adjacent time steps are
treated as individual features. The analyzed PV outputs of the d4PDF large
ensemble are 12-hourly, while the outputs of ERA-Interim and SPEAR are
6-hourly. For the consistency of results, the counts of LC1 and LC2 events
in ERA-Interim and SPEAR are scaled to a 12-hourly basis. The accumulated
three-month counts can be considered as the histogram of LC1-type and
LC2-type PV features in the latitude-longitude space. We use this output to
analyze the spatial-temporal distribution of LC1 and LC2 features.

Predictability analysis
We estimate the potential seasonal predictability of BWA using the PC19.
The main text has provided a brief introduction of PCobs and PCmod.
Interested readers can refer to Eade et al.19 for a detailed introduction of
the PC metrics. The PC calculation in this study uses the three-month
frequency of LC1 and LC2 events at latitude-longitude grid points (e.g.,
Figs. 2e–l) or within specific regions (e.g., Fig. 2m, n). The prediction skill
estimates and the PC calculation for each season are conducted using
the model outputs that are resampled with replacement (“boot-
strapping”). Three-month simulations of BWA are randomly drawn from
available ensemble simulations of each year. Repeating the drawing N
times for every year helps to generate artificial prediction ensembles
with N members. This N value is generally equal to the available
ensemble size unless otherwise specified (e.g., Fig. 2m, n). In all the
analyses, we repeat this bootstrapping procedure 1000 times to better
characterize uncertainties related to the unforced noise in the ensemble
simulations. In the predictability estimates, the resampling helps to
quantify uncertainties related to the unforced variability in the
dynamical system. This resampling, however, does not address the
sampling uncertainty that can affect PC calculations in a non-stationary
climate system64.

DATA AVAILABILITY
The d4PDF simulation data that support the findings of this study are publicly
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net/en/). Restrictions apply to the availability of certain SPEAR experiment data,
which are under U.S. government regulation. A subset of SPEAR data has been made
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CODE AVAILABILITY
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