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Abstract Improving the seasonal prediction of tropical cyclone (TC) activity demands a robust analysis
of the prediction skill and the inherent predictability of TC activity. Using the resampling technique, this
study analyzes a state‐of‐the‐art prediction system and offers a robust assessment of when and where the
seasonal prediction of TC activity is skillful. We found that uncertainties of initial conditions affect the
predictions and the skill evaluation significantly. The sensitivity of predictions to initial conditions also
suggests that landfall and high‐latitude activity are inherently harder to predict. The lower predictability is
consistent with the relatively low prediction skill in these regions. Additionally, the lower predictability is
largely related to the atmospheric environment rather than the sea surface temperature, at least for the
predictions initialized shortly before the hurricane season. These findings suggest the potential for
improving the seasonal TC prediction and will help the development of the next‐generation
prediction systems.

Plain Language Summary Dynamical seasonal prediction systems have recently shown great
promises in predicting tropical cyclone (TC) activity. This study takes advantage of the new tool and
evaluates the realized and the potential skills of the prediction. The evaluation reveals a caveat in earlier
examinations of the TC prediction, which may significantly inflate or deflate the prediction skill. Our
analysis takes account of the issue and offers a detailed view of when and where the TC prediction is skillful.
The analysis also suggests that the realized and the potential prediction skill are relatively low for landfall
activity and high‐latitude activity. By analyzing simulated TC activity and its environmental controls, the
study highlights the potential for improving seasonal TC prediction. The information is valuable to decision
makers who manage risk in these regions, as well as the improvement of dynamical prediction systems.

1. Introduction

Dynamical models were recently adopted in the seasonal prediction of tropical cyclone (TC) activity and
have shown remarkable skill (e.g., Camargo & Barnston, 2009; Camp et al., 2015; Chen & Lin, 2013;
Harnos et al., 2017; Manganello et al., 2016, 2017; Murakami et al., 2018, 2016; Vecchi et al., 2014; Vitart
et al., 2003; Vitart, 2006; Vitart et al., 2007; Vitart et al., 2010; Vitart & Stockdale, 2001). A key to the success
of these systems is running multiple simulations with perturbed initial conditions. This approach, known as
ensemble prediction, accounts for the sensitivity of model predictions to uncertainties in initial conditions.
An average of the ensemble predictions reduces the noisiness associated with uncertainties in initial condi-
tions and underlines the robust response among predicted scenarios. For a given model, the skill gain from
the ensemble approach depends on how well uncertainties in initial conditions are sampled, which is partly
indicated by the number of perturbed initial conditions used to initialize the ensemble prediction. For
example, the skill gain from adding perturbed initial conditions does not start to saturate until the ensemble
size reaches 25–30, at least in a TC‐permitting prediction system developed at the European Centre for
Medium‐Range Weather Forecasts (Manganello et al., 2016). However, such an ensemble size is difficult
to attain in the operational prediction of TC activity, as a high spatial resolution is required to simulate
TCs but is limited by the computational resource available within narrow time frames.

This study aims at exploring the implications of uncertainties in initial conditions for the seasonal prediction
of TC activity. We will start with testing the hypothesis that prediction uncertainties, which can be

©2019. American Geophysical Union.
All Rights Reserved.

RESEARCH LETTER
10.1029/2019GL082529

Key Points:
• Robust analysis reveals when and

where the seasonal prediction of
tropical cyclone activity is skillful

• Predictability for tropical cyclone
activity is lower in the extratropics
and the coastal region

• Further improvements of seasonal
prediction need to better constrain
atmospheric variability

Supporting Information:
• Supporting Information S1

Correspondence to:
G. Zhang,
ganzhang@princeton.edu

Citation:
Zhang, G., Murakami, H., Gudgel, R., &
Yang, X. (2019). Dynamical seasonal
prediction of tropical cyclone activity:
Robust assessment of prediction skill
and predictability. Geophysical Research
Letters, 46, 5506–5515. https://doi.org/
10.1029/2019GL082529

Received 19 FEB 2019
Accepted 29 APR 2019
Accepted article online 2 MAY 2019
Published online 16 MAY 2019

ZHANG ET AL. 5506

https://orcid.org/0000-0002-7323-3409
https://orcid.org/0000-0002-1816-3452
https://orcid.org/0000-0001-5601-9710
http://dx.doi.org/10.1029/2019GL082529
http://dx.doi.org/10.1029/2019GL082529
http://dx.doi.org/10.1029/2019GL082529
http://dx.doi.org/10.1029/2019GL082529
http://dx.doi.org/10.1029/2019GL082529
mailto:ganzhang@princeton.edu
https://doi.org/10.1029/2019GL082529
https://doi.org/10.1029/2019GL082529
http://publications.agu.org/journals/


contributed by uncertainties in initial conditions, can introduce substantial uncertainties in the skill evalua-
tion of predictions. More specifically, such evaluation is usually applied to the hindcasts, which are retro-
spective forecasts using only the initial conditions that are practically available at the time of prediction.
However, inadequate or biased sampling of uncertainties in initial conditions might introduce errors that
have a random component. Such errors would exist in predictions even when a prediction system perfectly
represents the climate dynamics. Therefore, the true skill of a prediction system may not be accurately
evaluated if the role of uncertainties in initial conditions is not properly considered. Nonetheless, the issue
is not always well recognized in the skill evaluation, as will be further discussed in section 2.2.

Following the skill evaluation, we will examine the prediction's sensitivity to the initial condition and
explore the predictability of TC activity. The predictability is the extent to which future states of a dynamic
system can be predicted. As an intrinsic characteristic of a dynamic system, the predictability is associated
with the upper bound of potential prediction skill, which might not have been realized by prediction
systems. The predictability of basin‐wide TC activity has been extensively studied (e.g., Gray, 1984;
Goldenberg et al., 2001; Dunstone et al., 2011; Vimont & Kossin, 2007; Wang et al., 2015). Recent findings
from dynamical predictions suggested that TC activity is predictable on the subbasin scale, even though
the prediction skill varies across regions (e.g., Camp et al., 2015; Vecchi et al., 2014). In particular, Mei
et al. (2014, 2015) suggested that near‐land TC activity was not strongly constrained by the sea surface
temperature (SST) and might be inherently less predictable. However, the findings by Mei et al. (2014,
2015) were based on a three‐member ensemble of Atmospheric General Circulation Model simulations.
Aside from the relatively small ensemble size, their SST‐forced experiments did not consider uncertainties
in initial conditions of the ocean or the ensuing error growth in the coupled climate system. Therefore,
the findings by Mei et al. (2014, 2015) may not directly apply to the predictability estimate in the seasonal
TC prediction.

This study will explore the two foregoing issues with the aim of informing decision makers of when and
where the seasonal TC prediction is reliable. Our investigation will leverage the Forecast‐Oriented Low
Ocean Resolution (FLOR) model developed at Geophysical Fluid Dynamics Laboratory (GFDL; Vecchi
et al., 2014). The model is a state‐of‐the‐art model in predicting the seasonal activity of TCs, and its variants
have been adopted in the real‐time North American Multi‐Model Ensemble prediction. Previous studies
reported that FLOR is skillful in predicting seasonal TC activity at regional scale (Murakami et al., 2015,
2016; Vecchi et al., 2014). The model setup, as well as the data and methodology, will be further described in
section 2. Section 3 will present the results, followed by a summary and discussion in section 4.

2. Data and Methodology
2.1. Observation Data and Model Setup

We use the International Best Track Archive for Climate Stewardship (Knapp et al., 2010) as the reference
TC data set. Our analysis focuses on TC activity during July–November, which approximately corresponds
to the peak TC seasons of the northern hemisphere basins, including the North Atlantic, the Northeastern
Pacific, and the Northwestern Pacific (Schreck et al., 2014). Basin‐wide TC activity is characterized using
the tropical cyclone frequency (TCF) and the accumulated cyclone energy (ACE; Bell et al., 2000). The
ACE is defined as the sum of the squares of maximum sustained surface wind speed for all the records of
named TCs. To analyze TC activity on the subbasin scale, we calculate the number of TC days during each
hurricane season in 5° × 5° grid boxes within the global domain. The data of TC days are smoothed using a
9‐point spatial filter to reduce its noisiness.

The GFDL FLOR model used in the study has been described in detail by Vecchi et al. (2014). We use a
version with the flux adjustment (FA) correction (Magnusson et al., 2013), which reduces the SST biases
and improves the TC prediction (Vecchi et al., 2014). In the FLOR‐FA configuration, the horizontal grid
spacing of the atmosphere and the ocean components are about 50 km and 1°, respectively. The relatively
high resolution of the atmosphere component helps simulate TCs, which are tracked using an algorithm
described by Murakami et al. (2015) and Harris et al. (2016). The prediction model also outputs the
large‐scale environmental variables, such as the SST and the precipitable water, which are closely associated
with TC activity. The environmental variables are regridded to a 5° grid to facilitate the computationally
intensive postprocessing described in section 2.2.
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2.2. Model Initialization and Hindcast Resampling

The FLOR‐FA hindcasts are 12‐month predictions initialized on the first day of each calendar month of
1981–2014. Our analysis focuses on the predictions initialized during January–July, which precede the peak
TC seasons of the Northern Hemisphere basins. To initialize the predictions, 12 sets of the ocean‐ice initial
conditions are generated using a coupled ensemble data assimilation system (Zhang et al., 2007), while three
sets of atmosphere‐land initial conditions are generated using SST‐constrained simulations by the FLOR
model (Vecchi et al., 2014). Each set of the atmosphere‐land initial conditions is combined with 4 of the
12 sets of ocean‐ice initial conditions to acquire 12 complete sets of initial conditions. More details of the
model settings and initialization are available in the supporting information (Delworth et al., 2006;
Delworth et al., 2012; Mulholland et al., 2015). As noted by Vecchi et al. (2014), the initialization procedure
is a technical choice and is “suboptimal” for sampling uncertainties in initial conditions.

Based on the initialization procedure, we can denote the FLOR‐FA hindcasts as Si,j,k, where i represents an
arbitrarily assigned ensemble index ranging from 1 to 12, j represents the initialization month ranging from
1 to 7, and k represents the initialization year ranging from 1981 to 2014. We consider the 12‐member pre-
dictions initialized at each time step as essentially independent simulations. Furthermore, the predictions do
not provide the initial condition for any predictions initialized at a later time step. Therefore, a prediction
initialized in a given month of one year (Si, j = J, k = K) is independent of the prediction initialized in the
same month of the next year (Si,j = J,k = K+1). For hindcasts initialized in a specific month, the independence
suggests that a 34‐year simulation (k= 1981,… ,2014) can be assembled by randomly selecting i for each year.

To evaluate the skill of an ensemble prediction system, an important metric is the Pearson correlation
coefficient (r) between the observation and the ensemble average. Manganello et al. (2016) noted that the
correlation coefficient varies when different combinations of ensemble members are used, especially when
the ensemble size is smaller than 25–30. The variations indicate that uncertainties in initial conditions
can introduce a random component when the skill metric is evaluated. However, the skill metric is usually
evaluated for an arbitrary combination of hindcast members (e.g., Chen & Lin, 2013; Vecchi et al., 2014),
suggesting that the skill evaluation might have unrecognized uncertainties. To explore if such skill evalua-
tion are robust, we resample i in predictions Si,j,k with replacement and draw 12‐member samples. By
conducting the resampling for k = 1981, … ,2014, we can generate an artificial set of 34‐year hindcasts that
consists of 12 ensemble members. For each initialization month (j = 1,. . ,7), we repeat the procedure and
generate 10,000 artificial sets of 12‐member and 34‐year hindcasts. Each artificial ensemble is equal in
representing the model‐simulated interannual variability. Using the resampling approach, we evaluate the
model performance by calculating the correlation coefficients between the observation and the ensemble
averages. Results of some other skill metrics are available in Supplementary Information.

2.3. Metrics of Estimating Predictability

This study estimates the seasonal predictability of TC activity using the concept of “predictable component”
(PC). Eade et al. (2014) proposed that predictions within a time range can be decomposed into (i) unpredict-
able noise related to the chaos of the climate system and (ii) a “PC” that is constrained by predictable
dynamic processes. The study also defines the PCs as the square root of the predictable fraction within the
total variance. The PC in the observation (PCobs) can be estimated using the Pearson correlation (r) between
the observation and the ensemble average, while the PC in model hindcasts (PCmod) can be estimated using
the following expressions:

PCmod ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2sig=σ

2
tot

q
(1)

Where σ2sig is the temporal variance of the model ensemble mean and σ2tot is the average of the temporal

variance of individual ensemble members (Eade et al., 2014). We calculate PCobs and PCmod for each of
the artificial ensembles, which helps outline the uncertainties in estimating PCs (Shi et al., 2015). The
estimates of PCobs and PCmod are subject to prediction biases, and the predictability indicated by the metrics
is also model dependent. Furthermore, the mathematical formulations of PCobs and PCmod allow the two
metrics to characterize prediction skills. For example, PCobs, by its correlation definition, is essentially a
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commonly used skill metric; a comparison of PCobs and PCmod can suggest whether a prediction system is
overconfident (PCobs < PCmod) or underconfident (PCobs > PCmod; Eade et al., 2014).

The predictability can also be estimated by evaluating the sensitivity of predictions to initial conditions
using the perfect model approach (e.g., Lorenz, 1982). By assuming that a model perfectly represents the
real‐world dynamic system, the approach affords an opportunity to put aside model errors and focus on
the sensitivity of predictions to uncertainties in initial conditions. For an N‐member ensemble, the sensitiv-
ity can be indicated by the Pearson correlation between the prediction by one ensemble member and the
average of the other ensemble members (N − 1). Following section 3.1 in Pegion et al. (2017), we calculate
the correlation coefficient, rotate through each ensemble member, and average the coefficients from the 12
calculations. Together with the resampling described in section 2.2, the approach helps to examine a large
number of possible combinations and represent the sensitivity in the predictions. The average of correlation
coefficients indicates the consistency among ensemble members, with weaker intraensemble correlations
suggesting that the prediction is more sensitive to the initial condition. This procedure is repeated for each
of the artificial ensemble (section 2.2) to ensure a robust estimate of the sensitivity.

3. Results
3.1. Prediction Skill and PCs

We first examine the prediction skill of the basin‐wide TCF and the basin‐wide ACE. Figure 1 shows the
correlation coefficients between the observation and the ensemble averages. The correlation coefficients
(denoted with red) suggest that the FLOR‐FA model is skillful in predicting TC activity, especially for the
North Atlantic and the northeastern Pacific. The relatively poor skill in predicting the TCF in the
northwestern Pacific basin has been noted and can be improved using statistical methods (e.g., Murakami
et al., 2016; W. Zhang et al., 2016). The prediction skills also vary with the lead time of the initialization, with
the predictions initialized in later months generally being more skillful. However, there are some note-
worthy behaviors or even exceptions. For example, there is a skill jump of the ACE prediction between
March and April in the northwestern Pacific (Figure 1f), which might be related to the spring barrier of pre-
dicting the Pacific climate (Webster & Yang, 1992). Another interesting example occurs in the northeastern
and the northwestern Pacific basin, where the June prediction of TCF is more skillful than the July TCF pre-
diction (Figure 1b). This behavior might be partly related to model drifts and biases that depend on the initi-
alization time (Figures S3–S7 in the supporting information).

Figure 1 also shows that the range in correlation coefficients for basin‐wide TC activity (PCobs) vary between
~0.10 and ~0.25. The range could widen to ~0.40 if the ensemble size is reduced from 12 to 6 (not shown).
The large spreads are consistent with the hypothesis that uncertainties in initial conditions affect the skill
evaluation of TC predictions. For example, the 2.5th to 97.5th percentile range of the correlation coefficients
is approximately 0.40 to 0.60 in the April prediction of the North Atlantic TCF. Without considering the
uncertainties using the resampling technique, the skill evaluation of an arbitrary ensemble combination
could deem the prediction as marginally skillful (r ≈ 0.40) or highly skillful (r ≈ 0.60) by chance. The issue
becomes more severe with a smaller ensemble size. For example, the correlation range in Figure 1 can reach
~0.40 when we reduce the ensemble size from 12 to 6 (not shown).

The blue box plots in Figure 1 show the PCs of basin‐wide TC metrics estimated using the FLOR‐FA
hindcasts (PCmod). Similar to the PCobs (viz., the correlation coefficients), the PCmod also varies with the lead
time of the initialization, with higher values appearing when the lead time is small. However, the variations
of PCmod with the lead time are generally weaker, and the values of PCmod remain above 0.5. In nearly all the
cases, PCobs is significantly smaller than PCmod. As noted in section 2.3 and by Eade et al. (2014), the relation
suggests that the predictions have a relatively high signal‐to‐noise ratio and are likely overconfident. In other
words, the predictions by ensemble members show relatively high consistency even when they are not
particularly skillful. In the Pacific basins, for example, the July predictions of the TCF have a relatively
low skill despite of the high intraensemble consistency suggested by the PCmod (Figure 1b and 1c). The beha-
vior also suggests that prediction errors might make PCobs indicate unrealistically low predictability.

Besides the basin‐wide metrics, the prediction skill of spatial characteristics of TC tracks also carries
important values. Figure 2 shows the PCobs and the PCmod estimated using the July prediction of TC
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days (section 2.1). The PCobs, namely, the correlation coefficients, show a pattern that is similar to the
correlation map of the FLOR predictions described by Vecchi et al. (2014). In particular, the prediction
of TC days near the Caribbean Islands, and Central America, Hawaii, and Micronesia is relatively skillful
(r > 0.40; Figure 2a). The regions with high values of the PCobs roughly correspond to the regions with
high values of the PCmod. The consistency suggests the relatively skillful predictions may be related to
a relatively large PC, which exists in the real‐world climate system and is successfully captured by the
FLOR‐FA. Nonetheless, the region where the PCobs and the PCmod are comparable is patchy and limited.
The prediction is persistently underdispersive and overconfident in many coastal regions of Asia and
North America.

3.2. Sensitivity to the Initial Condition and Predictability Estimate

To further illustrate the predictability of TC distribution on the subbasin scale, we now examine the intraen-
semble correlations (section 2.3) of TC days in the FLOR‐FA hindcasts. Figure 3 shows the intraensemble
correlation (section 2.3) of the predictions initialized in January, April, and July. The three predictions show
similar spatial patterns of the intraensemble correlation, with the strongest intraensemble correlation
appearing over the open ocean near 15°N. The correlation strengthens with the reduction of the lead time
of initialization. For example, the strongest correlation over the northwestern Pacific increases from 0.5–

Figure 1. Estimates of predictable components (PCs) of the observation (red) and the Forecast‐Oriented Low Ocean
Resolution‐flux adjustment hindcasts (blue). By its definition, PCobs also indicates the prediction skill. (a–c) Tropical
cyclone frequency (TCF) for the North Atlantic, northeastern Pacific, and the northwestern Pacific. (d–f) The same as
(a)–(c) but for the accumulated cyclone energy (ACE). The box plots show 2.5th, 25th, 50th, 75th, and 97.5th percentiles.
The dashed line represents the 95% confidence level for the correlation.
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0.6 in January to 0.7–0.8 in July. In parts of the extratropics and most coastal regions, the correlation also
increases from the January prediction but remains <0.40 even in the July prediction. The results suggest
that the prediction of TC activity in the coastal regions is more sensitive to uncertainties in initial
conditions and thus less predictable for the FLOR‐FA model.

On the subbasin scale, the predictability indicated by the sensitivity to initial conditions appears to corre-
spond to the prediction skill. For example, the regions where the prediction is the least sensitive to the initial
condition are nearly identical to the regions with high prediction skills (r > 0.40 in Figure 2a). Therefore, the
prediction in these regions might have benefited from higher inherent predictability of the dynamical sys-
tem. Interestingly, the northwestern Pacific prediction appears less sensitive to the initial condition than
the North Atlantic prediction does. The difference is consistent with that a larger portion of TC development
in the Atlantic basin involve baroclinic processes (McTaggart‐Cowan et al., 2013), which is associated with
lower predictability on the synoptic time scale (Wang et al., 2018). However, the seasonal prediction of
northwestern Pacific TC activity is only comparable to or even worse than the North Atlantic prediction
(Figures 1 and 2). The result suggests that the perfect prediction skill, or the potential skill indicated by
the “perfect” model, does not always translate to the actual prediction skill.

To explore what might affect the sensitivity of TC distribution to initial conditions, we examine the intraen-
semble correlation of some TC‐related environmental variables (Figure 4). For the July prediction, the SST is
the least sensitive to uncertainties in initial conditions. The ensemble members are nearly perfectly corre-
lated (r > 0.8) except in some extratropical regions. The prediction of the precipitation and the vertical wind
shear show strong intraensemble correlations in the deep tropics, but the correlations degrade substantially
poleward where the atmosphere gradually becomes baroclinically unstable. The results are consistent with
the notion that the tropical ocean is closely coupled with the tropical atmosphere (Trenberth et al., 1998), but
the upper ocean does not strongly constrain the interannual variability of the extratropical atmosphere
(Kushnir et al., 2002; Lee et al., 2011; Sutton & Hodson, 2007). A comparison of the sensitivity of the envir-
onmental variables to the initial condition suggests that the short‐range predictability of TC days might be

Figure 2. Estimates of predictable components (PCs) of tropical cyclone days in (a) the observation and (b) the hindcasts.
The predictions are initialized in July and target at July–November. Color shading shows the mean of resampled pre-
dictable components. Hatching in (b) highlights the regions where the difference between PCobs and PCmod is not sta-
tistically significant at 95% confidence level. The confidence level is determined with the resampling.
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more strongly limited by the atmospheric variables than by the oceanic forcing. For long‐range predictions
initialized earlier, the limitation by oceanic processes also becomes apparent (not shown) and further lowers
the predictability of TC days (Figure 3).

4. Summary and Discussion

This study uses the GFDL FLOR‐FA prediction system to examine how uncertainties in initial conditions
affect the seasonal prediction of TC activity. We show that a “suboptimal” sampling of uncertainties in initial
conditions (Vecchi et al., 2014) affects the skill evaluation of the seasonal prediction. For the 12‐member
hindcasts of 1981–2014, the uncertainties can make the correlation between the observed and the predicted
TC metrics vary by ~0.10 to ~0.25. These variations can affect the model skill evaluation by making predic-
tions from the same model appear marginally or highly skillful. The uncertainty in the skill evaluation is
greater when the ensemble size is small. A skill evaluation with the resampling suggests that the prediction
by FLOR‐FA tends to be more skillful when the lead time of initialization is relatively short and in tropical
regions with extensive ocean coverage, such as the Caribbean Islands, and Central America, Hawaii,
and Micronesia.

Figure 3. Intraensemble correlation of predicted tropical cyclone days (July–November). Predictions are initialized in (a)
January, (b) April, and (c) July. The black dashed line denotes the Pearson correlation that is at the 95% confidence level.
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A comparison of PCs in the observation and the modeled climate suggests the prediction tends to be over-
confident, especially when the prediction is less skillful. The issue might arise because of an underestimate
of the PC in the observation, since model biases and a suboptimal initialization may lower the correlation
between the observation and the prediction (Eade et al., 2014). Using the perfect model approach, we exam-
ine the sensitivity of the prediction to the initial condition and find that the predictability of TC activity is
lower in the extratropics and the coastal region. The predictability, at least for short‐range predictions,
appears largely limited by the atmospheric environment variables rather than the SST. Consistent with this
finding, earlier studies suggest that the variability of extratropical atmosphere is not strongly constrained by
the oceanic forcing (Kushnir et al., 2002; Lee et al., 2011; Sutton & Hodson, 2007) and is associated with
lower prediction skills of TC activity (Bell et al., 2014; Fitzpatrick et al., 1995; Li et al., 2018; Wang et al.,
2018; G. Zhang, et al., 2016). Overall, the skill of the FLOR‐FA prediction appears higher in regions where
the potential predictability is higher.

The study outlines when and where the FLOR‐FA prediction is the most skillful. Although findings might be
partially model dependent, they should be useful for decision makers who wish to take advantage of the

Figure 4. Intraensemble correlation of predicted large‐scale environment (July–November). (a) Sea surface temperature
(SST), (b) precipitation, and (c) 200‐ to 850‐hPa vertical wind shear. The predictions are initialized in July. The black
dashed line denotes the Pearson correlation that is at the 95% confidence level.
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dynamical predictions. The study also highlights some intriguing issues in the seasonal prediction of TC
activity. For example, there is a significant gap between the realized prediction skill and the potential
predictability indicated by the FLOR‐FA hindcasts. Although the gap does not necessarily indicate room
for skill improvements (Kumar et al., 2014), it does suggest significant differences between the modeled
and the real‐world climate. Another issue is the lower predictability of near‐land TC activity. The cause of
the low predictability is not immediately clear. It may be related to the crude initialization of the
land‐atmosphere component of the FLOR‐FA model (Vecchi et al., 2014) or the land‐atmosphere‐ocean
interaction that might be inherently less predictable. These issues suggest new opportunities for improving
the dynamical prediction and physical understanding. For example, refining the model initialization
will likely improve predictions. Our efforts that attempt to address these issues will be introduced in
upcoming studies.
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