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Anthropogenic forcing changes coastal tropical cyclone
frequency
Shuai Wang1,2,3✉, Hiroyuki Murakami 2 and William F. Cooke 2

It remains a mystery if and how anthropogenic climate change has altered the global tropical cyclone (TC) activities, mainly due to
short reliable TC observations and climate internal variabilities. Here we show with large-ensemble TC-permitting simulations that
the observed increases in TC frequency since 1980 near the US Atlantic coast and Hawaii are likely related to the aerosol and
greenhouse gases (GHG) effects, respectively. The observed decrease in the South China Sea after 1980 could be associated with
GHG emissions alone, whereas the observed increase near Japan and Korea during this period would be related to the aerosol and
GHG combined effects. These changes in coastal TC frequency are explained by the responses of large-scale environmental
conditions to anthropogenic forcing.
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INTRODUCTION
Anthropogenic activities have been affecting our climate since the
industrial revolution1. The effect of anthropogenic climate change
on tropical cyclones (TCs) is of particular concern because of their
catastrophic damage at landfall and relatively frequent occurrence
compared to other natural hazards. However, it is notoriously
challenging to attribute a regionally observed tropical cyclone
frequency (TCF) change to anthropogenic climate change. The
reasons for this difficulty are twofold. First, climate internal
variability can considerably modulate regional TC activities2–5.
Second, reliable TC observations are only available since the
satellite era, and therefore, not long enough to separate the
potential effect of anthropogenic climate change from climate
internal variability.
With the rapid development of high-performance computing,

large-ensemble climate simulations have become a powerful tool
to overcome this obstacle. Since the simulated climate internal
variability in models can be, by design, out of phase among
ensemble members through the initial condition large-ensemble
simulations, the model-estimated effect of anthropogenic climate
change on TCF can emerge after averaging out the internal
variability by taking the ensemble mean6. Following this path, it
was reported recently that anthropogenic climate change might
have played an important role in the observed global TCF change
since 1980, including the substantial increase in the North Atlantic
and decrease in the western North Pacific6,7. Other multiple
attempts8–13 have also been made by scientists on the detection
and attribution of the anthropogenic impact on TCF, but mostly
from a basin-mean perspective. However, considering the actual
TC threat posed to our society, the coastal TCF change under
anthropogenic forcing is a central and perhaps ultimate concern.
Based solely on TC observations, it has recently been found that

TC activities have been migrating towards coastal regions since
1980, related to a westward shift of TCF in most of the global
basins14. However, it is still unknown whether these observed
coastal changes are related to anthropogenic climate change or
climate internal variability. In this study, we will explore this vital
question by investigating the effect of anthropogenic forcing on

the coastal TCF change globally with large-ensemble TC-permit-
ting simulations (see Methods). This is an important step forward
to understanding better the TC threat as the substantial impact of
human activity on our climate system continues now and will do
in the future.

RESULTS
SVD analysis
This study’s TCF is defined as the annual total number of TC
records observed in each 5� ´ 5� grid covering the globe. The
target period of TCF change is confined from 1980 to 2020 when
the global TC observation is more reliable than in the pre-satellite
era15. Figure 1a shows the observed epochal TCF difference
(2001–2020 minus 1980–2000). For coastal regions, we have been
seeing significantly increased TCF along the US Atlantic coast,
around Hawaii, near the Northeast Asian coast (i.e., the Japan-
Korea region), along the western coast of the Arabian sea, and to
the north of Madagascar. Meanwhile, significant decreases in the
observed TCF have happened near Mexico/Central America west
coast, in the South China Sea, and in proximity to the Australian
coast. With the listed areas above, we first try to identify the
coastal regions where the TCF change is less likely to be related to
climate internal variability with the singular value decomposition
(SVD) analysis.
Two kinds of SVD analysis are performed (global and regional

SVD analyses, see Methods). In the global SVD analysis (Supple-
mentary Fig. 1), the spatial pattern of the first SVD sea surface
temperature (SST) shows high similarity to the SST configuration
of the Interdecadal Pacific Oscillation16,17 (IPO). Supplementary
Table 1 confirms that the expansion coefficient for the first SST
mode shows the highest correlation with the IPO index (r2= 0.89,
p-value < 0.05) among all four natural variability indices examined.
The second SVD mode represents the global mean SST change
(Supplementary Fig. 1d–f), showing a high covariance between
the expansion coefficient and the long-term global mean SST
increase (r2= 0.87, p-value < 0.05). Consistent global SVD results
can be reproduced with the TC records in the North Atlantic,

1Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USA. 2Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric
Administration, Princeton, NJ, USA. 3Department of Geography and Spatial Sciences, University of Delaware, Newark, DE 19716, USA. ✉email: shwang@udel.edu

www.nature.com/npjclimatsci

Published in partnership with CECCR at King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00516-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00516-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00516-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00516-x&domain=pdf
http://orcid.org/0000-0002-1816-3452
http://orcid.org/0000-0002-1816-3452
http://orcid.org/0000-0002-1816-3452
http://orcid.org/0000-0002-1816-3452
http://orcid.org/0000-0002-1816-3452
http://orcid.org/0000-0003-4550-3210
http://orcid.org/0000-0003-4550-3210
http://orcid.org/0000-0003-4550-3210
http://orcid.org/0000-0003-4550-3210
http://orcid.org/0000-0003-4550-3210
https://doi.org/10.1038/s41612-023-00516-x
mailto:shwang@udel.edu
www.nature.com/npjclimatsci


eastern North pacific and western North Pacific with an extended
period of 1960–2020 (Supplementary Fig. 2 and Supplementary
Table 2) so that the results of global SVD analysis appear to be
independent on the length of analyzed period.
Based on the physical representation of the first and second

modes in the global SVD analysis, we next conduct the regional
SVD analysis to identify the coastal regions where TCF is highly
correlated with the global mean SST mode but less with the
natural variability mode (hereafter referring explicitly to the IPO). A

regional SVD on one map grid utilizes the same global SST field
but different regional TCF information on the central and eight
surrounding grids. The regional SVD is repeated until the global
TCF field is covered (see Methods). Figure 1b–e shows the
composite of SVD SST and expansion coefficient in the modes that
are highly correlated with the natural variability and global mean
SST change, respectively. On average, the natural variability mode
appears as the first mode with a global mean SST mode as the
second mode, which is consistent with the global SVD outcomes.

Fig. 1 Observed TCF change for 1980–2020 and regional SVD modes. a TCF epochal change after and before the year 2000. The white “x”
denotes statistically significant change at a 90% confidence interval based on a two-sided bootstrap test. b–g Regional SVD analysis using SST
and TCF. b Composite of the SVD mode representing climate internal variability characterized by the IPO. c As in (b), but for the SVD mode
representing the global mean SST change. d Time series of the expansion coefficient (EC) for SST of the natural variability mode superimposed
on the observed IPO index with a flipped sign. e As in (d), but for the global mean SST mode. f The squared covariance fraction (SCF) map of
the SVD mode representing natural variability (only the grids with SCF ≥ 50% are colored). g As in (f), but for the global mean SST mode. The
magenta boxes in (a) highlight six coastal regions where the SCF of global warming mode is no less than 50% in (g) and the observed TCF
change in (a) is statistically significant.
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Figure 1f, g shows the regional co-variability of SST and TCF in
the natural variability and global mean SST modes, respectively,
measured by the squared covariance fraction (SCF) with all the
regional SVD results combined. Here we define a group in the
variation of regional TCF at one grid is less likely dominated by
natural variability when the SCF score of the natural variability
mode is less than 50% in Fig. 1f, or equivalently, more than 50% in
Fig. 1g representing the grids dominated by the mode of global
mean SST change. Superposing the colored regions in Fig. 1g and
observed significant change of TCF in Fig. 1a, we can identify
several coastal regions where the observed TCF change in the past
four decades are more likely to be related to the global mean SST
warming, indicating the potential influence of anthropogenic
forcing on coastal TCF changes. These coastal regions include the
US Atlantic coast, Hawaii region, Northeast Asian coast near Japan
and Korea, South China Sea, western coast of the Arabian Sea, and
Madagascar region (all highlighted with magenta boxes in Fig. 1a).
Although SVD analyses do not guarantee perfect separation
between natural variability and anthropogenic modes, we assume
that the global mean SST warming mode based on observations
(Fig. 1) is potentially related to anthropogenic climate change.
Next, we will leverage large-ensemble simulations to explore
further if the effects of anthropogenic climate change on
simulated TCF changes over these coastal regions are also
predominant over the same period.

Large ensemble simulations
The effect of anthropogenic climate change can be broken down
into anthropogenic aerosol effect (e.g., related to sulfate, organic
carbon and black carbon emissions), and anthropogenic GHG
effect (e.g., due to carbon dioxide, methane, and other GHG
emissions). Four suites of large-ensemble simulations are
performed with both aerosol and GHG forcing (named as AllForc),
only GHG forcing (named as AllForc_NoAE), only natural forcing
(named as NatForc, including, e.g., volcanic eruption, solar

insolation variability), and pre-industrial forcing representative of
1850 (named as CNTL). Supplementary Fig. 3 shows that the large-
ensemble simulations generate a consistent climatology of annual
global TC counts as in observation, with a median and one
standard deviation of 85 and 9 TCs, respectively. By applying the
regional SVD analysis to all the ensemble members of AllForc, we
find the potentially dominant role of anthropogenic forcing on
coastal TCF changes around the US Atlantic coast, Hawaii region,
Northeast Asian coast near Japan and Korea, South China Sea,
western coast of the Arabian Sea, and Madagascar region
(Supplementary Fig. 4g), which showed significant trends in TCF
by the observations (Fig. 1g). We next identify the single forcing
effects of anthropogenic aerosol, GHG and natural forcing on the
potential coastal TCF changes, by calculating the ensemble mean
TCF trend difference in pairs of the four simulation suites (see
Methods for details).
Compared to the observed coastal TCF changes in Fig. 1a, the

TCF trend difference in Fig. 2 shows consistent changes—with
statistical significance at a 10% level—along the US Atlantic coast
and around Madagascar under the aerosol effect (Fig. 2a), around
Hawaii and in the South China Sea under the GHG effect (Fig. 2b),
and near the Japan-Korea region under a combined effect of
aerosol and GHG (Fig. 2d). These coastal regions are where we
speculate that the observed TCF change is less likely to be related
to the natural variability but more likely related to at least part of
anthropogenic climate change. The observed significant increase
in TCF to the western coast of the Arabian Sea was not simulated
under any forcing in the model. Natural forcing may be important
to the observed increase of TCF around Madagascar but does not
show any consistent sign of changes with the observed TCF
changes over the other targeted coastal regions.

TCF origin analysis
TCF changes could be related to TC track and genesis changes. We
next utilize a previously developed TCF origin analysis9 (see

Fig. 2 Differences in simulated ensemble-mean TCF trends for 1980–2020. The trends are calculated based on annual TCF numbers, due to
(a) the anthropogenic aerosol effect (AllForc minus AllForc_NoAE), b The anthropogenic greenhouse gas effect (AllForc_NoAE minus NatForc),
(c) natural forcing (NatForc minus CNTL) and (d) the combined effect of anthropogenic aerosol and GHG effects (AllForc minus NatForc). The
white dot shows the grid where the ensemble mean TCF trends in two experiment suites are statistically different at a 90% confidence interval
based on a two-sided t-test approach. The magenta boxes are the same as in Fig. 1a.
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Methods) to further attribute the differences in TCF trends to
those in TC genesis and/or TC tracks. Along the US Atlantic coast,
the positive TCF trend under the aerosol effect (Fig. 3a) is primarily
contributed by the TC genesis increase in the TC main
development region (Fig. 3b, highlighted with the green box).
Consistent with a previous study9, the positive TCF trend around
Hawaii under the GHG effect (Fig. 3e) is also largely related to the
TC genesis increase to the south of Hawaii (Fig. 3f). Meanwhile, TC
track changes over the eastern North Pacific in the deep tropics
(Fig. 3g) also favor the TCF increase near Hawaii (Fig. 3e). For the
negative TCF trend in the South China Sea under the GHG effect

(Fig. 3i), both TC genesis reduction and unfavorable TC track
change to the east of the Philippines are related (Fig. 3j, k). For the
TCF increase around the Japan-Korea region (Fig. 3m), the TC track
changes to the south of this region are found to be the most
important (Fig. 3o), followed by the increase in TC genesis (Fig.
3n), under the combined effect of aerosol and GHG emissions.
Figure 3k, o suggest a general track direction shift for the TCs over
the Philippine Sea from entering the South China Sea to moving
toward the Japan-Korea region, which agrees with previous
findings focusing on the future projection18–20. For the positive
TCF trend around the northern tip of Madagascar under the

Fig. 3 TCF origin analysis applied to the five coastal regions. a–d The US Atlantic coast under the anthropogenic aerosol effect. a Local TCF
trend change under the aerosol effect as shown in Fig. 2. b–d The contribution of each grid to the total TCF change (Δdf ) in the magenta box
due to genesis change (ΔdgB;Ao ), TC track change (ΔdtB;Ao ), and nonlinear combination of genesis and track changes (ΔdnB;Ao ). e–h As in (a–d),
but for the Hawaii region under the anthropogenic GHG effect. (i–l) As in (a–d), but for the South China Sea under the anthropogenic GHG
effect. m–p As in (a–d), but for the Japan-Korea region under the anthropogenic aerosol and GHG effects. q–t As in (a–d), but for the
Madagascar region under the anthropogenic aerosol effect. The magenta boxes show the same regions as in Fig. 1a. The green boxes
highlight the key regions with the genesis and track contributions.

S. Wang et al.

4

npj Climate and Atmospheric Science (2023)   187 Published in partnership with CECCR at King Abdulaziz University



aerosol effect, both the local TC genesis increase and TC track
change are important (Fig. 3r, s).

DGPI Analysis
We next explain the causes for the TC genesis and track changes
in the key regions highlighted by the green boxes in Fig. 3, by
analyzing two environment-based proxies—the genesis potential
index (GPI) and steering flow. We chose a recently developed
dynamic GPI21,22 (DGPI) to represent the TC genesis potential. This
choice was made mainly considering a higher consistency of the
simulated TC genesis frequency (Supplementary Fig. 5) with the
DGPI (Fig. 4a–c, spatial correlation r2= 0.47) than that with a
conventional choice—the Emanuel-Nolan GPI23 (Supplementary
Fig. 6, spatial correlation r2= 0.34), particularly in the Southern
Hemisphere.
The simulated DGPI trend difference shows evident and

significant increases in the Atlantic TC main development region
and around the northern tip of Madagascar under the aerosol
effect (Fig. 4a), an increase to the south of Hawaii and a decrease
to the east of the Philippines under the GHG effect (Fig. 4b), and

an increase to the south of Japan-Korea region under the
combined effect of aerosol and GHG emissions (Fig. 4c). It is
encouraging to see that the DGPI trends in these key regions
(green boxes in Fig. 4a–c) agree well with the genesis contribution
analyzed in Fig. 3. This allows us to further break down the DGPI
index to investigate which environmental factor contributes the
most to the DGPI trend change with different anthropogenic
forcing (Table 1, Supplementary Fig. 7 and see Methods). Around
Madagascar, although the vertical motion shows the highest
contribution of 119% to the DGPI increase (Table 1), we decided
not to investigate this region further in this study, considering the
DGPI trend difference there in Fig. 4a is highly localized with
limited statistical significance.
For the DGPI increase in the Atlantic TC main development

region, Table 1 shows that the vertical wind shear change
contributes the most (by 40%) under the aerosol effect, mainly
due to a zonal shear reduction (Supplementary Fig. 8a–c). This
reduced shear is dominated by a significant easterly anomaly at
200 hPa (Supplementary Fig. 8d), which indicates the weakening
of subtropical jet with the anthropogenic aerosol forcing.

Fig. 4 Trend difference in TC dynamic genesis potential index (DGPI) and steering flows. The ensemble-mean trends are based on the
mean change in each year of 1980–2020 during the main TC seasons only. Northern Hemisphere: July-October; Southern Hemisphere:
December (of the previous year)-March. DGPI and 300–850 hPa mass-weighted steering flows are calculated with monthly-mean data before
taking the main TC season mean. The white dot in (a–c) shows the statistically significant change in DGPI. The dark black arrow in (d–f)
denotes significant changes in zonal and/or meridional steering components. The white and gray backgrounds in (d–f) show easterly and
westerly zonal wind anomalies, respectively. A statistical significance test is conducted with a 90% confidence interval based on a two-sided t-
test approach. The green boxes highlight the key regions with the genesis and track contributions.
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For the DGPI increase to the south of Hawaii, Table 1 also shows
that the vertical wind shear change, dominated by the variation in
zonal winds (Supplementary Fig. 9a–c), is the largest contributor
(by 56%). Supplementary Fig. 10d shows that under the GHG
effect, an SST warming tongue extends from midlatitudes to the
central Pacific. Such a central Pacific warming can perturb the
climatological Walker circulation, weakens 200-hPa westerly
(Supplementary Fig. 9d) and 850 hPa easterly (Supplementary
Fig. 9e) simultaneously, and therefore, reduces the vertical wind
shear and increases DGPI to the south of Hawaii.
For the DGPI decrease to the east of the Philippines, the vertical

motion weakening in the mid-troposphere appears as the most
important factor (by 70%) under the GHG effect (Table 1). This
suppressed vertical motion, located over the Pacific warm pool,
connects to an easterly anomaly at 200 hPa (Supplementary Fig.
9d) and a westerly anomaly at 850 hPa (Supplementary Fig. 9e) to
the west of the dateline, and an anomalously upward motion
above the equatorial central Pacific (Supplementary Fig. 10b)
where the SST is anomalously warmed (Supplementary Fig. 10d).
Thus, the central Pacific warming under the GHG effect may be a
primary driver for the DGPI reduction to the east of the Philippines
by weakening the Walker circulation.
For the DGPI increase to the south of Japan, enhanced

meridional shear vorticity at 500 hPa is a dominant factor under
a combined effect of aerosol and GHG emissions (55%, Table 1).
Figures S11a–c show an easterly anomaly around 30oN in the
western North Pacific under aerosol and/or GHG effect. Strong
easterly anomalies cover the northern part of the key genesis
region to the south of Japan (green box in Supplementary Fig.
11c), producing a positive change in meridional shear vorticity and
causing an increase in the DGPI there.
What is the physical mechanism for the aforementioned

500 hPa easterly anomaly at 30oN? Further analysis reveals that
the easterly anomaly at 500 hPa is related to a weakening of the
subtropical jet at 200 hPa (Supplementary Figs. 8d, 9d). We can
also see an enhancement of 200 hPa zonal wind to the north of
50oN (Supplementary Figs. 8d and 9d), indicating a poleward shift
of the subtropical jet over the western North Pacific and Northeast
Asia. As a response due to thermal wind balance, the subtropical
jet may be shifted poleward if the meridional temperature
gradient is weakened24. Indeed, Supplementary Fig. 12a–c confirm
the mid-latitude warming in the lower troposphere under aerosol
and GHG effects. The mid-latitude warming decreases the
meridional temperature gradient, weakens the subtropical jet via
a thermal wind adjustment, and therefore, generates 500-hPa
easterly anomalies at 30oN as shown in Supplementary Fig. 11.

Steering flow analysis
For the steering change in the western North Pacific, a westward
steering anomaly around 30oN (Fig. 4d–f) is found to be tied to the
weakened subtropical jet aloft. This westward steering anomaly,
covering the northern part of the box in Fig. 4f, lets TCs stay longer
in the Japan-Korea region under a combined effect of aerosol and
GHG emissions. In the southern part of the box in Fig. 4f, we can
see a cyclonic circulation over the Philippine Sea, which should be
mainly due to the GHG effect (Fig. 4e). This cyclonic circulation
generates eastward TC steering to the east of the Philippines (Fig.
4e), creating an unfavorable steering condition that reduces the
probability for TCs entering the South China Sea under the GHG
effect. Meanwhile, it can also increase the chance for TCs to move
meridionally into higher latitudes where westward steering
anomaly can push TCs toward the Japan-Korea region under the
combined effect of aerosol and GHG emissions (Fig. 4f).
What is the physical driver behind the cyclonic circulation over

the Philippine Sea in Fig. 4e? We show that under the GHG effect,
there is an equatorial central Pacific warming (Supplementary Fig.
10d), accompanied by a central Pacific ascending anomaly
(Supplementary Fig. 10b), and 200 hPa easterly anomaly (Supple-
mentary Fig. 9d) and 850 hPa westerly anomaly (Supplementary
Fig. 9e) between the Philippines and dateline. Together with the
cyclonic circulation over the Philippine Sea, all these features
dramatically resemble a classic Gill-type circulation pattern25. We,
therefore, speculate that the cyclonic circulation over the
Philippine Sea is very likely to be a Gill-type response to the
central Pacific warming under the GHG effect.
The Gill-type circulation pattern may also be related to the

steering change affecting the TCF near Hawaii. Figure 4e shows
that under the GHG effect, there is a weak westward steering
enhancement in the eastern part of the Hawaii-related box—
favoring TCs moving toward the central North Pacific and Hawaii.
The enhanced westward steering is part of the equatorial easterly
anomaly in the East Pacific, which vanishes in the central Pacific
where the SST shows anomalous warming (Supplementary Fig.
10d). This equatorial easterly anomaly is also consistent with the
zonal-vertical circulation of the Gill-type response to the central
Pacific warming due to GHG emissions.

DISCUSSION
The regionally oceanic and atmospheric warming may be the
primary cause of the coastal TCF change under anthropogenic
forcing. We find that two kinds of warming are related.
First, the anomalous lower-tropospheric warming at midlati-

tudes under the aerosol effect weakens the subtropical jet over
the North Atlantic, which reduces the vertical wind shear over the
Atlantic Main development region, increases the cyclogenesis
probability, and thus increase the TC activity along the US Atlantic
coast. Over Northeast Asia and the western North Pacific, aerosol
and GHG effects can also generate lower-tropospheric warming at
midlatitudes, which weakens the subtropical jet, therefore
increasing the chance for TCs approaching the Japan-Korea
region.
It was reported that the observed anomalous tropospheric

warming at midlatitudes for 1979–2005 reduces the meridional
temperature gradient, providing evidence that the subtropical jets
have been shifting poleward24. The causality between the
midlatitude warming in the lower troposphere and the poleward
shift of the subtropical jet was also examined and established in
another simulation study26. Since the jet stream can be regarded
as the Hadley cell terminus, the subtropical jet shifts poleward in
tandem with a widening of the Hadley cell27. Increases in GHG
concentration28 can expand the tropical belt, which is in line with
our analysis showing a poleward shift of subtropical jet under the
GHG effect. Still, more research inputs are warranted to identify

Table 1. Decomposition of DGPI trend change by region.

% OMEGA V-SHEAR M-SHEAR VORT DGPI (total)

US Atlantic Coast 26 40 11 23 100

Hawaii 47 56 −16 12 100

South China Sea 70 53 −27 4 100

Japan-Korea 21 16 55 8 100

Madagascar 119 110 −83 −46 100

The DGPI equation (see Method) is linearized by taking the logarithm. The
mean log(DGPI+ 1) change for each region highlighted by the green
boxes in Fig. 4a–c is broken down into the relative contribution (in a unit of
%) of four terms related to the change of absolute vorticity (VORT), vertical
motion (OMEGA), vertical wind shear (V-SHEAR), and meridional shear
vorticity (M-SHEAR). A positive contribution of one term means the
logarithm of the trend difference of this term shows the same sign as the
mean log(DGPI+ 1) trend difference. Bold font highlights the largest
contribution in each region.
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the key mechanisms linking the anthropogenic forcing and the
observed tropical expansion in the preceding decades27.
Second, the equatorial central Pacific warming under the GHG

effect stimulates a classical Gill-type circulation pattern in the
northern tropical Pacific, which could be related to the increase in
TCF near Hawaii and reduction in the South China Sea by varying
the local TC steering and genesis conditions. This equatorial
central Pacific warming also appears in the SST pattern of the
global mean SST mode in our global SVD analysis (Supplementary
Fig. 1d), in line with the SVD result in a previous study6. In the
North Pacific, the SST warming pattern under the GHG effect
(Supplementary Fig. 10d) shows substantial similarity to the
warming configuration during an El Niño Modoki II event29, the
intensity and relative frequency of which have been increasing
since the late twentieth century30. A similar SST warming trend in
the central Pacific can also be seen in a reconstructed SST
dataset31 for 1854-2019. More analyses are still needed to confirm
further if the equatorial central Pacific warming has been
happening since 1980. However, our analysis, at least, indicates
that this potentially warming pattern may be associated with
anthropogenic GHG emissions.
It should be noted that there is only one climate model used in

this study and the results may be model dependent. Despite this
caveat, this study shows that the observed TCF change in several
coastal regions over the past 40 years is potentially associated
with anthropogenic climate change, mainly through regional
warming and its remote influence on circulations that changes the
TC genesis and steering conditions. Many studies have focused on
the global- and basin-mean change of TC activity6,8,32. However,
considering the real threat posed by TCs, the TCF changes in
coastal regions are perhaps our ultimate concern. From this
perspective, our study reveals that the inhabited coastal regions
worldwide may face further uneven changes, with increases in
landfalling TC threats in some regions and decreases in others, as
anthropogenic climate change continues.

METHODS
Data
The TC best track data was taken from the International Best Track
Archive for Climate Stewardship33 (IBTrACS, Version 4.0). Six ocean
basins are considered, including the North Atlantic (NA), eastern
North Pacific (EP), western North Pacific (WP), North Indian Ocean
(NI), South Indian Ocean (SI), and South Pacific (SP). The borders of
the basins are shown in Fig. 1a. The best track data for the NA and
EP were provided by the National Hurricane Center, and the Joint
Typhoon Warning Center’s best track was used for the WP, NI, SI,
and SP. We utilized the best track records at 00, 06, 12, and 18
Coordinated Universal Time with a maximum sustained near-
surface wind speed of at least 34 kts (tropical-storm strength)
observed over oceans within the 60oN-60oS latitude band.
The monthly sea surface temperature (SST) data were taken

from the Hadley Centre Sea Ice and Sea Surface Temperature data
set34 (HadISST). The ERA5 monthly reanalysis data from the
European Centre for Medium-Range Weather Forecasts35 were
also used for historical climatology analysis.
In this study, all the TC frequency-related analysis is based on

the annually accumulated TC count (i.e., in Figs. 1–3, S1–S5,
S13–S15, S17). We only consider environmental condition changes
during the main TC seasons, that is, July-October for the Northern
Hemisphere, and December (of the previous year)-March in the
Southern Hemisphere (i.e., in Fig. 4 and S6-S12). Note that the NI
shows different TC seasonality and we do not explain the TCF
change in the NI with the environmental condition changes
presented in this study.
Before further analysis, TC best tracks and environmental

variables were linearly interpolated onto a 5o-latitude by 5o-

longitude map. The results shown in this study are not sensitive to
the choice of grid resolution for interpolation.
The IPO index is calculated as the standardized second principal

component of the empirical orthogonal function (EOF) analysis for
the 13-year low-pass-filtered global SST16. This calculation is
applied to both observations and simulations.

Models
SPEAR36 was used in this study, which comprises 50 km atmo-
spheric and land mesh and 100 km mesh for the ocean and sea-
ice components. Consistent with the pre-processing of the
observed best tracks, model-generated TCs were identified and
tracked every 6 h using a previously developed TC tracking
scheme37 with a maximum wind speed of at least 16.5 m s−1, well-
established warm core, and minimum duration of 36 h38. The
SPEAR model can well simulate the seasonality of TC number in all
the basins compared to the observation (Supplementary Figs. 13,
14), and reasonably reproduce the IPO-like variability6 and its
relation to TCF (Supplementary Fig. 15).

Large-ensemble experiments
We used SPEAR to perform initial condition large-ensemble
experiments. Five kinds of simulations were performed, that is,
CNTL, AllForc, AllForc_NoAE, NatForc, and AllForc_Nudge_SST,
which are explained in detail as follows.

CNTL. A 3000-year pre-industrial climate simulation was gener-
ated. We then resampled thirty times for 41 consecutive years
(same length as from 1980 to 2020) within the last 2000 years of
the simulation to form 30 ensemble members. These 30 members
represent the climate scenario with pre-industrial forcing.

AllForc. The historical external forcing was prescribed for
1921–2014, followed by the Shared Socioeconomic Pathway
5-85 (SSP5-85)39 after 2015. The prescribed external forcing
includes both anthropogenic and natural forcing. Anthropogenic
forcing includes greenhouse gases, anthropogenic aerosols, and
ozone, whereas natural forcing includes solar constant, volcanic
eruptions, and natural aerosols such as dust. Volcanic forcing was
only prescribed before 2006. There are 30 ensemble members.

AllForc_NoAE. The external forcing is identical to the AllForc
experiment, but with the emissions of anthropogenic aerosols,
such as sulfates, organic carbon, and black carbon, fixed at the
level of 1921. There are 12 ensemble members. Supplementary
Fig. 16 shows that these 12 members are enough to largely
remove the natural internal variability after taking the
ensemble mean.

NatForc. The natural forcing is identical to the AllForc experi-
ment, but with the fixed anthropogenic forcing at the level of
1921. There are 30 ensemble members.

AllForc_Nudge_SST. As in AllForc, but with SSTs nudged to
HadISST at 5-day time scale for 1971–2020. There is only 1
ensemble member. This simulation is used as part of the
validation of SPEAR TC climatology against the observation for
1980–2020 (Supplementary Fig. 3).

Separation of anthropogenic effects on TC activity
We consider four kinds of forcing on TC activity, including the
climate internal variability (e.g., the IPO), natural forcing (e.g.,
volcanic eruption), anthropogenic GHG forcing (e.g., CO2 emis-
sion), and anthropogenic aerosol forcing (e.g., sulphate emission).
The initial condition of the ensemble members is based on a

2000-year “preindustrial” control run with atmospheric
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composition fixed at levels representative of calendar year 1850.
The ensemble simulations were started from the atmospheric, ice
and ocean restart files from the control simulation at years 101,
121, and every 20 years thereafter combined with the 1921 land
restart file (due to limitations imposed by land vegetation
transitions) of the first historical member of the ensemble. In this
way, the fully coupled SPEAR can simulate largely uncorrelated
natural internal variability among ensemble members (e.g., as
shown in Supplementary Fig. 16). By taking the ensemble mean,
climate internal variabilities can be largely averaged out in SPEAR
since they are out of phase among ensemble members by
design6. In this way, the effect of anthropogenic climate change
and natural forcing on TC activity can be separated. For example,
the first global SVD mode in the ensemble mean of SPEAR
simulation represents a clear global warming mode (Supplemen-
tary Fig. 17).
We consider four kinds of climate change effects on TC activity

under the following forcing:

● Natural forcing: the ensemble-mean difference between
experiments NatForc minus CNTL,

● Anthropogenic GHG forcing: the ensemble-mean difference
between experiments AllForc_NoAE minus NatForc,

● Anthropogenic aerosol forcing: the ensemble-mean differ-
ence between experiments AllForc minus AllForc_NoAE, and

● Anthropogenic forcing (combined effect of GHG and
aerosol): the ensemble-mean difference between experiments
AllForc minus NatForc.

To explore the effect of each forcing on TCF, we calculated the
difference of the ensemble-mean TCF trend for 1980–2020
between two suites of experiments in the related pair.

SVD analysis
SVD analysis is a multivariate statistical method that can identify
the synchronized spatial and temporal correlations between two
3-dimensional variables, which, in this study, refer to as the SST
and TCF matrixes. The SVD outputs are multiple paired SST and
TCF patterns, each of which corresponds to an orthonormal mode.
For each pair of the SST and TCF patterns (i.e., each mode), a pair
of expansion coefficient (EC) time series were also generated for
SST and TCF, respectively. A squared covariance fraction (SCF, in a
unit of %) was calculated for each mode, describing the fraction of
co-variability between the SST and TCF patterns in that mode
relative to the total co-variability.
Two types of SVD analyses were performed in this study. For the

first kind (hereafter, the global SVD), the global SST and TCF fields
were utilized as inputs (Supplementary Figs. 1 and 2), which was
also applied in a previous study6 by Murakami et al. Some
consistencies between regional TC activity and SST pattern can be
observed. For example, Supplementary Fig. 1a, b show a large
reduction of TCF in the open ocean of the western North Pacific
with weak increase in TCF along the East Asia coast, which is in
line with a westward shift of storm activity under a La Niña type
SST pattern2.
For the second kind (hereafter, the regional SVD), the global SST

field and regional TCF information were employed as inputs (Fig.
1b–g). Specifically, for one grid point Ai;j , nine grids of Ai ± 1;j ± 1

were used as the TCF input for the regional SVD analysis at Ai;j . In
this way, each regional SVD analysis can generate 9 modes. Most
of the grids yielded the first two leading modes as global SST
mode and IPO mode. By calculating the Pearson correlation
coefficient of the global mean SST and IPO time series,
respectively, with the EC time series of each mode, we could
identify two modes that best represent the global mean SST
change and IPO, respectively. The regional SVD was repeated to
cover all the global grids. Two modes selected from each regional

SVD analysis were used for the composite results shown in
Fig. 1b–g.

Origin analysis for TCF trend
The TCF origin analysis9 is a method that can identify the locations
of the contribution of TC genesis, TC track change, and the non-
linear combination of the two to the mean TCF trend change in a
region of interest.
The TCF at an individual grid A in one year can be written as

f ¼
Z Z

C
g ´ t dAo; (1)

where f ¼ f Að Þ is the TCF at grid A in this year, g ¼ g Aoð Þ is the
frequency of TC genesis in a remote grid cell Ao, t ¼ t A;Aoð Þ is the
probability that a TC generated in the grid Ao can propagate to
grid A, and C is the region over which the integration is calculated
(e.g., over one ocean basin).
Now we decompose f in one year with the climatological mean

(f ) and the anomaly (f ’) in this year, i.e., f ¼ f þ f ’, and Eq. (1) can
be rewritten as

f þ f 0 ¼
Z Z

C
gþ g0ð Þ ´ t þ t0ð Þ dAo: (2)

By removing the climatological mean relationship (f ¼RR
C g ´ tdAo), Eq. (2) can be simplified as

f 0 ¼
Z Z

C
g

0
´ t dAo þ

Z Z
C
g ´ t0 dAo þ

Z Z
C
g0 ´ t0 dAo: (3)

The map of annual TCF trend, denoted as ∂
∂t f þ f ’
� �

¼ ∂
∂t f ’
� �

,
can be then decomposed with Eq. (3) as

∂

∂t
f 0
� � ¼ ∂

∂t

Z Z
C
g0 ´ t dAo

� �
þ ∂

∂t

Z Z
C
g ´ t0 dAo

� �
þ ∂

∂t

Z Z
C
g0 ´ t0 dAo

� �
:

(4)

To establish the origin analysis for TCF trends, we rewrite Eq. (4)
as

∂

∂t
ðf 0B;AoÞ|fflfflfflfflffl{zfflfflfflfflffl}
df B;Ao

¼ ∂

∂t
ð
Z Z

B
g0Ao ´ tAo dAÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dtB;Ao

þ ∂

∂t
ð
Z Z

B
gAo ´ t

0
Ao dAÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dgB;Ao

þ ∂

∂t
ð
Z Z

B
g0Ao ´ t

0
Ao dAÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dnB;Ao

;

(5)

where A presents all the grids in the region of interest, B (e.g., the
US Atlantic coast). The three terms on the r.h.s. shows the effects
—i.e., genesis change, track change and nonlinear combination of
the two, respectively—of a remote grid cell Ao on the mean TCF
change in the region of B. The term on the l.h.s. represents the
overall effect of the changes in grid Ao on the TCF mean change in
the region of B.
Next, we apply Eq. (5) to an experiment 1 that serves as a

reference (e.g., AllForc_NoAE), which can be written as

∂

∂t
f 0B;Aoð1Þ
� � ¼ ∂

∂t

Z Z
B
g0Aoð1Þ ´ tAoð1Þ dA

� �
þ ∂

∂t

Z Z
B
gAoð1Þ ´ t

0
Aoð1Þ dA

� �

þ ∂

∂t

Z Z
B
g0Aoð1Þ ´ t

0
Aoð1Þ dA

� �
:

(6)

Similarly, we can also apply Eq. (5) to an experiment 2 that can
be regarded as a sensitivity test (e.g., AllForc), which can be
written as

∂

∂t
f 0B;Aoð2Þ
� � ¼ ∂

∂t

Z Z
B
g0Aoð2Þ ´ tAoð1Þ þ tAoðΔÞ

� �
dA

� �

þ ∂

∂t

Z Z
B

gAoð1Þ þ gAoðΔÞ
� �

´ t0Aoð2Þ dA
� �

þ ∂

∂t

Z Z
B
g0Aoð2Þ ´ t

0
Aoð2Þ dA

� �
;

(7)
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where tAoðΔÞ ¼ tAoð2Þ � tAoð1Þ and gAoðΔÞ ¼ gAoð2Þ � gAoð1Þ, which
represent the difference of climatological mean of track prob-
ability and genesis frequency, respectively, in experiment 2
relative to experiment 1.
By taking the difference of Eqs. (7) and (6) we havewhere the

term on the l.h.s., denoted now as df B;Ao , shows the total effect of
a remote grid Ao on the TCF trend difference between the two

experiments in the region of B. The three terms on the r.h.s.,
denoted as df B;Ao , dgB;Ao and dnB;Ao , respectively, show the
breakdown effects of genesis, track, and nonlinear combination
of the two from a remote grid Ao on the mean TCF change in the
region of B (e.g., the anthropogenic aerosol effect on the mean
TCF change along the US Atlantic coast in Fig. 3b–d). Compared to
the individual influence of TC genesis and track, the nonlinear
combination of the two (the last column of Fig. 3) shows a much
weaker impact on the simulated TCF trend difference in all five
regions.

Genesis Potential Index (GPI)
GPI is an index that describes the likelihood to have a TC genesis
given the local environmental conditions. The dynamic GPI (DGPI)
can be defined as22where Vs is the vertical wind shear magnitude

(m s-1) between 200 and 850 hPa, u500 is the zonal wind (m s-1) at
500 hPa, � du500

dy

� �
denotes the meridional shear vorticity (s-1) at

500 hPa, ω500 is the vertical velocity in a pressure coordinate (Pa s-1),
ζa850 is the absolute vorticity (s-1) at 850 hPa, and e is the natural
base. The calculated DGPI value was set back to zero between 5oN
and 5oS or where the relative SST becomes negative. These two
criteria were justified against observations in previous studies21,22.
Note that the DGPI includes thermodynamic factors indirectly via
the OMEGA term. ω500 highly correlates with the 600-hPa relative
humidity and local SST anomaly relative to the tropical mean21.
These high correlations reflect a physical linkage among the three:
locally high SST may foster 500-hPa ascent-related moisture
convergence that tends to moisten the lower troposphere by
increasing the relative humidity at 600 hPa21.
The definition of DGPI, i.e., Eq. (9), can be linearized by taking

the logarithm as

logðDGPI þ 1Þ ¼ logðV � SHEARÞ þ logðM� SHEARÞ þ logðOMEGAÞ þ logðVORTÞ � 11:8:

(10)

Equation (10) is used to calculate the relative contribution of
different terms to the mean DGPI change in a region of interest
(Table 1 and Supplementary Fig. 7).

For comparison, the conventional GPI, i.e., Emanuel-Nolan GPI
(ENGPI) is also calculated, which can be defined as23

ENGPI ¼ 105η
		 		3=2 RH

50

� �3 Vpot

70

� �3

1þ 0:1Vsð Þ�2; (11)

here Vpot is the maximum potential intensity (m s-1) defined by the
local thermodynamic profile40.

Statistical significance test
The statistical significance of this study is defined with 90%
confidence intervals. We calculated the statistical significance
between two linear trends with a t-test (Figs. 2, 4, S5, and S8-S12).
For the epochal TCF change (Fig. 1a), a bootstrap approach14 was
utilized. Two tested populations were resampled in pairs for
10,000 times. The difference in the means of each pair was then
calculated to form a new distribution with 10,000 samples, from
which the 90% confidence intervals were obtained.

DATA AVAILABILITY
Tropical cyclone best-track data can be downloaded from the National Centers for
Environmental Information website (https://www.ncei.noaa.gov/data/international-
best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/csv/
ibtracs.ALL.list.v04r00.csv). The HadISST dataset can be accessed from the UK Met

Office Hadley Centre (https://www.metoffice.gov.uk/hadobs/hadisst/data/
HadISST_sst.nc.gz). The ERA5 monthly reanalysis data can be downloaded from
The Copernicus Climate Change Service (https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-pressure-levels-monthly-means?tab=overview). The SPEAR
large-ensemble data for the AllForc experiments are online available at https://
noaa-gfdl-spear-large-ensembles-pds.s3.amazonaws.com/index.html#SPEAR/GFDL-
LARGE-ENSEMBLES/CMIP/NOAA-GFDL/GFDL-SPEAR-MED/.

CODE AVAILABILITY
The source codes for the analysis of this study are available from the corresponding
author upon reasonable request.
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