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Abstract

Tropical cyclones are a highly destructive type of natural disaster. The effect of
anthropogenic climate changes on global tropical cyclone activity is of great
interest and an important topic among the science community and public. How-
ever, little is known about whether the ongoing climate changes have already
affected the observed tropical cyclone activity. Despite the lack of a reliable long-
term global observed tropical cyclone record, some recent observational and
modeling studies have shown clear trends in tropical cyclone activity that could
be attributable to anthropogenic climate changes. This chapter introduces those
among these recent studies that have not been covered in previous review articles.
These include recent observed trends in tropical cyclone activity, new modeling
techniques to identify the cause of extreme tropical cyclone events, and new
studies on projected future increases in global tropical cyclone numbers. Specif-
ically, significant trends have been unearthed in the spatial distributions of
tropical cyclones at the global scale, as well as in terms of an increased frequency
of tropical cyclone occurrence in coastal regions worldwide since the 1980s.
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Some modeling studies indicate that these observed trends could be attributable to
some combination of changes in greenhouse gases, anthropogenic aerosols, and
volcanic aerosols. There have also been some new studies that have applied the
method of event attribution to estimate the influence of anthropogenic climatic
changes on extreme storm events or seasons. Some recent studies have reported
projected future increases in global tropical cyclone numbers, which is different
from previous studies that showed projected decreases, highlighting the substan-
tial level of uncertainty in future projections. This chapter reviews these new
studies and discusses their implications and uncertainties.

Keywords

Tropical cyclone · Anthropogenic climate change · Event attribution · Future
projection · Uncertainty

1 Introduction

Global mean temperature has been rising rapidly since the mid-twentieth century,
and it is widely accepted that a substantial part of this temperature rise is attributable
to increases in emissions of greenhouse gases [1]. Meanwhile, the effect of global
warming on global tropical cyclone (TC) activity is of great interest and an important
topic among the science community. In the last decade, there were many intense TCs
that made landfall over coastal regions all over the world, thus stimulating public
interest regarding the impact of the ongoing issue of global warming on TC activity.
The latest studies indicate that these recent changes in TC activity could be due to
human influences on the climate. However, this view has been challenged for the
following reasons: (1) the limited availability of long-term TC observations makes it
difficult to infer the effect of anthropogenic climate forcing agents on TC activity and
(2) the significant influence of intrinsic internal variability on TC activity makes the
signal of anthropogenic climatic changes in TC activity difficult to detect.

To discuss the reasons for long-term changes in observed TC activity, enduring
and reliable records of TCs are necessary. In this respect, reliable measurements of
TC intensities at the global scale have been available since the beginning of the
1980s via satellite visible and infrared images through the Dvorak technique [2].
However, before the satellite era, TCs were mainly observed by ships, land-based
observations, and reconnaissance aircraft. Therefore, prior to the meteorological
satellite era, TCs that did not approach land or encounter a ship or aircraft had a
greater chance of not being detected, leading to missing storms in the observed
record. Even after the start of the satellite era, the satellites that have been available
have been changing decade by decade. Also, because the Dvorak technique has been
changing decade by decade too, the TC data gathered over the years naturally
contain temporal heterogeneities, especially the record of storm intensity [3]. In
addition, TCs have been analyzed by different organizations with varying methods
applied from basin to basin. Therefore, there is an inherent lack of temporal and
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spatial consistency in the observed TC data record. In short, the way in which the
observed TC data currently available and their associated analysis techniques have
evolved has given rise to substantial uncertainty in any trend revealed by them.

Meanwhile, there is also significant internal variation in TC activity at the decadal
time scale, which makes it difficult to detect secular trends due to any anthropogenic
climate change from the observations. For example, the observed number of TCs
shows substantial multi-decadal oscillations in the western North Pacific (WNP) and
North Atlantic (NA), revealing significant changes around 1998. Coincidentally, the
Pacific Decadal Oscillation (PDO) [4], Interdecadal Pacific Oscillation (IPO) [5],
and Atlantic Multidecadal Variability (AMV) [6], which are the known examples of
climate variability at the decadal time scale, experienced a change in sign around
1998. Previous studies have reported that the IPO, PDO, and AMV might influence
TC activity on the global scale [7–10]. Therefore, several studies have argued that
the observed trends in TC intensity and frequency are mainly due to the intrinsic
decadal internal variability, as the interpretation of the above decadal variations as
natural variability [e.g., 11, 12]. Overall, currently, there is no firm confidence or
consensus within the science community regarding the influence of anthropogenic
climate change on the observed trends in TC activity, largely due to the substantial
uncertainty in the observed TC record and the possibly substantial influence of
internal variability [13].

Despite the limitations involved, many studies have attempted to detect observed
climate changes in TC activity (i.e., establish that observed changes are highly
unusual compared to expected natural variability) using numerical dynamical cli-
mate models as well as various observed and reanalysis datasets. A comprehensive
review of studies published up to 2019 is available in Knutson et al. [13] from the
perspective of observed climate changes in TC activity and in Knutson et al. [14]
regarding the possible changes in TC activity projected in the future. However, there
have been new studies published since these works by Knutson et al. that are also
relevant towards developing an understanding of the effect of anthropogenic climate
change on TC activity. The focus in this chapter, therefore, is to review these new
studies and discuss their implications and uncertainties. Hereafter, the term “TCs”
refers to all storm types, including tropical storms (�34 kt), hurricanes and typhoons
(�64 kt), and major hurricanes (MHs) (�96 kt).

2 Detected Climatic Change in the Global Distribution of TCs

TC seasons with unprecedented characteristics have tended to occur all over the
world in the most recent decade. For example, the NA experienced a record 30 TCs
in 2020; the WNP experienced its first instance of no TCs in July in 2020 [15]; the
Central Pacific, including Hawaii, experienced an unprecedented number of TCs and
MHs in 2015 [16]; and the Arabian Sea experienced its first instance of multiple
intense storms in the post-monsoon season in 2015 [17]. Figure 1a shows the
observed trend in TC frequency of occurrence (TCF) over the period 1980–2018.
Here, TCF, which can also be referred to as the TC density, is defined as the total
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TCF counted every 6 hours in the observed TC data for every 5� � 5� grid cell. The
red shading in Fig. 1a indicates an increasing occurrence of TCs, while the blue
shading indicates a decreasing occurrence. The TCF shows significant negative and
positive trends, depending on the region, over 1980–2018. For example, the TCF has
increased in the NA, central Pacific including Hawaii, and Arabian Sea, whereas it
has decreased in the tropical WNP, South Indian Ocean, and along the east coast of
the South Pacific, which are all linked to the aforementioned active and inactive TC
seasons in the last decade. These recent increases in unprecedented TC seasons in
specific regions have aroused public interest regarding the impact of anthropogenic
climatic change on TC activity. Although most previous studies have focused on the
possible climatic changes in the global TC number, mean TC intensity, and mean
precipitation associated with TCs, the climatic changes in regional TCs have not
received much attention and have been regarded as relatively more uncertain despite
their significant societal importance [1, 13, 14]. This is mainly because of the
uncertainty in observations and significant influence of natural variability on TC
activity, as discussed in the introduction. In addition, relative to the consistent
changes in TC frequency and intensity at the global scale, diverse results have
been obtained regarding regional changes in the TC activity projected by many

(a) (b)

(c) (d)

Fig. 1 (a) Observed linear trends in TC frequency of occurrence (TCF) for the period 1980–2018
[number per year]. TC positions were counted for each 5� � 5� grid box within the global domain.
The total count for each grid box was defined as the TCF. (b) As in (a), but for the ensemble mean of
the large-ensemble experiments using a high-resolution global climate model prescribed with
historical time-varying external forcing, such as greenhouse gases, anthropogenic aerosols,
ozone, volcanic aerosols, and the solar constant. (c) As in (a), but for the ensemble mean of the
large-ensemble experiments prescribed with time-varying historical volcanic aerosols and the solar
constant, while the other forcings were fixed at the 1921 level. (d) As in (a), but for the experiments
in which CO2 was increased by +1% per year as a boundary condition. (Adapted from Murakami
et al. [18]. Licensed under CC BY-NC-ND 4.0)
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climate models [14]. Therefore, it has been a challenging issue to estimate any trends
in the observed spatial distribution of TCs.

Because of the short duration of the observed record, we primarily rely on climate
model simulations to understand forced climate change (e.g., anthropogenic forcing)
and internal natural variability (e.g., the PDO, IPO, and AMV). Murakami et al. [18]
demonstrated that the observed trends in the spatial distribution of TCs, as shown in
Fig. 1a, are attributable to externally forced climate changes that are beyond the
influence of internal decadal variability. Figure 1b shows the trend in TCF over the
period 1980–2018 as simulated by state-of-the-art climate models forced by natural
and anthropogenic external forcings. Note that Murakami et al. [18] conducted the
so-called large-ensemble simulations, which is a simulation method that isolates the
effect of forced climate change from that of internal natural variability [19]. In short,
large-ensemble simulations are historical simulations forced with time-varying
external forcing such as greenhouse gases, anthropogenic aerosols, ozone, volcanic
aerosols, and the solar radiation constant. Each ensemble member is initialized under
a different atmospheric state and oceanic conditions and forward-integrated with
prescribed time-varying external forcing. Although atmosphere–ocean coupled
models produce a similar evolution of global mean temperature as observed, they
generate their own internal variability along with the evolution of the mean state
such that each ensemble member exhibits a different phase of internal variability,
meaning that some members exhibit a positive PDO while others exhibit a negative
PDO, even during the same period. Hence, taking the average of the ensemble
members can cancel out the effect of internal variability, and the resultant mean
fields can be considered as the response to the external forcing. Figure 1b shows the
trend in the ensemble mean TCF fields as simulated in the all-forcing experiments,
revealing a similar trend in the spatial pattern of TCF as observed (Fig. 1a). This
suggests that the observed trends in the spatial distribution of TCF are attributable to
external forcing. In other words, the model results suggest that a climatic change in
the global spatial distribution of TCs has already emerged in observations and may in
part be attributable to external forcing.

As shown above, it is likely that external forcing has played an important role in
the observed change in the global TC distribution since 1980. However, external
forcing includes various elements, such as greenhouse gases, anthropogenic aero-
sols, and volcanic aerosols. Therefore, it is important to quantify the individual
contributions that these elements make to the changes in the spatial distribution of
TCs. Murakami et al. [18] conducted another set of large-ensemble simulations in
which fixed levels of greenhouse gases and aerosols were forced at the 1941 level
along with time-varying volcanic forcing and solar radiation to clarify the effect of
volcanic and solar activity on the spatial distribution of TCs. Figure 1c shows the
trends in TCF simulated by the experiments, in which we can see similar spatial
patterns to the observed TCF trends, especially over the Indian Ocean, South Pacific,
and NA. Indeed, the simulated spatial pattern of the TCF trend in Fig. 1c indicates
that the TC activity in the earlier decades of 1980–2000 was below average for the
period in the Northern Hemisphere and above average in the Southern Hemisphere
and the sign of the pattern reversed in the later decades of 2001–2018. Associated
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with this change, there were two large volcanic eruptions in the Norther Hemisphere
in the earlier decades—El Chichón in 1982 and Pinatubo in 1991. Murakami et al.
[18] discussed that these two large volcanic eruptions in the Northern Hemisphere
might have potentially caused a southward shift in TC genesis locations due to the
cooling effect of the Northern Hemisphere and that recovery from this volcanic
impact has been taking place since 2000.

Another recent study also reported that mean TC genesis locations could poten-
tially shift southward (northward) after the occurrence of volcanic eruptions in the
Northern (Southern) Hemisphere [20]. They argued that a volcanic eruption in one
hemisphere would cause asymmetrical hemispheric cooling, which in turn would
cause a shift of the Intertropical Convergence Zone (ITCZ) toward the other hemi-
sphere (Fig. 2). This shift of the ITCZ would in turn lead to changes in TC genesis
and intensity potential, resulting in an asymmetric anomaly of TC activity between
the hemispheres. Therefore, the northward shift in the spatial distribution of TCs, as
shown in Fig. 1c, could be partially interpreted as the result of recovery from the
surface cooling caused by the two large volcanic eruptions that happened in the

(b)

(a)

Fig. 2 Changes in TC genesis potential index (GPI) for numerical experiments induced by
volcanic eruptions in the Northern Hemisphere (a) and Southern Hemisphere (b) relative to
no-volcano reference simulations for the first storm season in the Northern Hemisphere (July–
October) and in the Southern Hemisphere (January–April). GPI is a physically motivated empirical
index used to estimate the influence of several large-scale environmental factors on TC genesis
frequency. Only values that are significantly different at the 5% level using a t-test are shaded. GPI
is an index to reflect the degree of TC genesis occurrence that comprises several large-scale factors.
(Adapted from Pausata and Camargo [20]. Licensed under CC BY-NC-ND 4.0)
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Northern Hemisphere during the 1980s and 1990s. They also revealed, using a
dynamical model, that the effect of volcanic eruptions on TC activity lasts for at
least 4 years. Evan [21] also reported that the number of TCs in the NAwas reduced
after the eruptions of El Chichón and Pinatubo and suggested that the reduced TC
activity could have been caused by these eruptions. Meanwhile, another study
suggested that there is less observed evidence for volcanic events affecting TC
activity at the global scale [22]. Indeed, they argued that the reduction in TC activity
in the Northern Hemisphere following strong volcanic eruptions cannot be clearly
attributable to volcanos, as all the eruptions were coincident with El Niño–Southern
Oscillation (ENSO) warm events (i.e., El Niño events). Because El Niño is well
known to exert variation in the global distribution of TCs, one cannot immediately
conclude that the observed changes in TC activity following volcanic eruptions are
purely due to these volcanic eruptions. This debate also stems from the issues
discussed in the introduction, i.e., that the length of the reliable observational record
is too limited to robustly identify the influence of volcanic events on global TC
activity, as well as that there are significant effects of natural internal variability on
global TC activity.

To isolate the effect of increases in greenhouse gases on the global distribution of
TCs, Murakami et al. [18] conducted another type of experiment in which CO2 was
increased by +1% per year as a boundary condition until the CO2 level had doubled
relative to the level in 1990, while the other external forcings were fixed at their
levels in that year. The simulated TCF trend during the period when CO2 was
increased is shown in Fig. 1d, revealing a similar spatial pattern of TCF trends to
that observed (Fig. 1a) and that in the all-forcing experiments (Fig. 1b). This
indicates that the observed spatial pattern of the global TCF trend during
1980–2018 was probably partially caused by greenhouse gas increases. However,
it is interesting to note that there is a different spatial pattern of the TCF trend over
the NA, where the model showed a decreasing TCF trend (Fig. 1d), whereas
observations showed an increasing one (Fig. 1a). Conversely, the model experiments
forced with all external forcings showed an increasing TCF trend in the NA
(Fig. 1b). These mixed model results suggest that the observed positive TCF trend
in the NA during 1980–2018 may not be related to increases in CO2, and other
external forcings may be involved. Murakami et al. [18] speculated that the increas-
ing TCF over the NA is related to changes in anthropogenic aerosols. Figure 3a
shows the simulated and observed number of TCs in the NA, which demonstrates an
increasing trend over the period 1980–2018 and a simulated decreasing trend after
2020. Figure 3b shows the specified sulfate over the NA, revealing that the simulated
number of TCs is anti-correlated with the prescribed anthropogenic aerosols during
1960–2020, insofar as the simulated number of TCs is lower around 1980 when
sulfate aerosols over the NA are higher, whereas the simulated number of TCs in the
NA shows an increasing trend between 1980 and 2020 when anthropogenic aerosols
show a decreasing trend over that period. Why, then, did the increase (decrease) in
anthropogenic aerosols inhibit (stimulate) the TC activity in the NA? Particulate
pollution and other aerosols affect clouds and precipitation processes and reflect
sunlight away from the earth, causing regional cooling of the oceans such that the
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large-scale oceanic condition is unfavorable for TC activity. In line with their
technological development, European countries and the USA suppressed emissions
of manmade aerosols from the early 1980s, which led to a surface ocean warming in
the NA in the model simulations. This in turn probably contributed to the observed
increased activity of TCs over the NA during the period 1980–2020. This increased
TC activity in the NA due to diminished anthropogenic aerosols was also studied by
Dunstone et al. [23] and Sobel et al. [24]. Despite the projected low level of
anthropogenic aerosols after 2020 (Fig. 3b), the projected number of TCs in the
NA continues to decrease in the model simulations (Fig. 3a). This suggests that the
effect of greenhouse gases will dominate in the future in relation to reduced numbers
of TCs in the NA in the model simulations.

3 Changing TC Tracks Near Coastal Regions

In the previous section, the observed changes in the global distribution of TCs over
the past 40 years were discussed. However, the most important and relevant topic for
society is whether TCs are tending to approach coastal regions more frequently.
Kossin et al. [25] reported poleward migration of the mean locations where observed
TCs reached their lifetime maximum intensity (LMI) in the past 40 years. However,
this poleward migration of the LMI may not directly indicate an increasing risk of
coastal TCs because these locations are commonly over the open oceans and too far
from coastal regions to generate any impacts on human society. Therefore, quanti-
fying the changes in coastal TC activity, landfall frequency, and TCs over land is
more central to estimating and mitigating the risks of storm-related damage in the
future.

(a) (b)

Fig. 3 Time series of observed and simulated TC numbers and sulfate aerosols in the North
Atlantic by Murakami et al. [18]. (a) Annual TC number in the North Atlantic [units: number per
year]. (b) Annual mean sulfate aerosols over the North Atlantic Ocean [5�N–45�N, 10�W–90�W;
units: 10�6 kg m2]. The black line in (a) is from observations. The thin red lines in (a) and (b) are the
TC numbers and sulfate aerosols, respectively, simulated by the 30-member large-ensemble
simulations with all forcing by a dynamical model, while the thick red line is the ensemble mean.
(Adapted from Murakami et al. [18]. Licensed under CC BY-NC-ND 4.0)
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In addition to poleward migration of the LMI, Wang and Toumi [26] reported an
increasing trend in the frequency of coastal TCs worldwide over the period
1982–2018. Figure 4a shows the observed trend in the mean distance between the
land surface and TC locations. The data indicate that the annual mean distance of the
LMI to the nearest land mass shows a statistically significant decreasing trend of
around �32 km per decade across the globe. Figure 4b indicates that the annual
fraction of TCs entering global coastal regions, defined as the offshore area with a
distance to the nearest land mass of less than 200 km, shows a robust increase of
around +2.2% per decade. Figure 4c indicates that there is a positive trend in the
annual mean fraction of their lifetime that TCs spend in coastal regions, at a
statistically significant rate of around +2.1% per decade. Table 1 also shows the
observed changes in mean TC locations between the periods 1982–1999 and
2000–2018, revealing that, across the world’s basins, these have been migrating
not only poleward but also westward. Considering the global distribution of land and
sea, this westward shift of TC locations is expected to lead to a more frequent
occurrence of TCs in coastal regions. Moreover, Table 1 shows that the magnitude of
the mean shift in TC locations is larger in the zonal than the meridional direction.
Specifically, mean TC locations have been shifting westward in the WNP, East
Pacific, and Indian Ocean. These basins accounted for 75% of the world’s TCs
during 1982–2018, which explains the global mean westward shift in TCs and
indicates a greater risk of storm-related damage for society. TC locations are
primarily determined by the environmental steering flow, but also the locations of
TC genesis. Wang and Toumi [26] revealed a significant enhancement in the
westward trend in steering flows at the global scale (Table 1). They also found
greater reductions in vertical wind shear in western than eastern domains across all of
the world’s basins, indicating more favorable large-scale conditions for TC genesis
and propagation in the western domains than in the eastern domains.

Related to the findings of Wang and Toumi [26], Yamaguchi and Maeda [27]
also reported an increasing number of TCs approaching Tokyo since 1980

Fig. 4 Landward migration of global TC activity. (a) Time series of the annual mean distance
between land and locations of lifetime maximum intensity (LMI) [km]. (b) As in (a), but for the
fraction of annual TCs entering coastal regions [%]. (c) As in (a), but for the time fraction of the
annual mean lifespan spent in coastal regions [%]. The dashed lines show the historical data. The
solid lines show the linear trends. The shading represents the 95% confidence interval of the linear
trend. (Adapted from Wang and Toumi [26]. @Science. Used with permission)
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(Fig. 5). Figure 5a–c indicates that the number of TCs approaching the southern
coast of Japan, including Tokyo, has increased over the last 40 years. Yamaguchi
and Maeda [27] indicated that, in the most recent decades relative to the decades
before, the subtropical high had strengthened and the westerly jet had weakened,
leading to a more conducive large-scale environment for TCs approaching
Tokyo. However, when the trend analysis was extended to the pre-satellite era
(e.g., 1951–2019, Fig. 5d), there was no significant trend in the number of TCs
approaching Tokyo. Note that, relative to TC data over the open oceans, TC
records near land before the satellite era could be more reliable because the Japan
Meteorological Agency has been recording in situ observations and statistics on
the number of TCs approaching Japan since 1951. Given the steady number of
TCs near Tokyo over the longer period of 1951–2019, Yamaguchi and Maeda
[27] speculated that, rather than being related to anthropogenic climate change,
the increasing number of TCs near Tokyo over the recent period of 1980–2019
may instead be related to natural decadal variability, such as the PDO.

(a) (b)

(c) (d)

Fig. 5 All TC tracks that approached Tokyo in (a) 1980–1999 and (b) 2000–2019, showing
increasing numbers in the latest decades. Time series of the number of TCs that approached
Tokyo over (c) 40 years from 1980 to 2019 and (d) 69 years from 1951 to 2019. The linear
regression and the 95% confidence interval around the linear regression line are shown in red and
orange, respectively. (Adapted from Yamaguchi and Maeda [27]. Used as open access)
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On the other hand, Wang and Toumi [26] showed that the observed trend in the
westered shift in TC locations was still significant even after statistically removing
the influence of the PDO. Thus, it is still uncertain as to the extent of the roles played
by natural decadal variability and anthropogenic climate change as identified by
Wang and Toumi [26] and Yamaguchi and Maeda [27], because both studies were
based on observational data analysis. Further studies using climate models may help
improve our understanding of the cause of the shifts in mean TC locations.

4 Slower Decay of Landfalling TCs

The source of energy for a TC is the release of latent heat through the evaporation of
water from the ocean surface. Therefore, once a TC makes landfall, it disconnects
from its energy source and starts to decay. In this respect, it is expected that a TC will
last longer over the land surface if the initial TC intensity at landfall is stronger, and a
recent study by Li and Chakraborty [28] reported a tendency in recent decades for
hurricanes over the NA to be doing just that, spending more of their lifetime farther
inland. They analyzed the 71 hurricanes over the NA that made landfall during the
period 1967–2018 (Fig. 6a). TC intensity (V ) decays exponentially after making
landfall, as follows:

V tð Þ ¼ V 0ð Þe�t=τ, ð1Þ
where t is the time past landfall and τ is the decay timescale that characterizes the rate
of decay. The larger the τ, the slower the decay and therefore the stronger the
hurricane. Figure 6b shows a histogram of τ for the periods 1967–1992 and
1993–2018, revealing larger τ over the latter period, meaning slower decay over
land in recent decades. There is a high correlation between the interannual variation
in τ and the mean sea surface temperature (SST) over the tropical NA (correlation
coefficient ¼ 0.73) (Fig. 6c), indicating a substantial effect of ocean warming on the
slower decay of landfalling TCs. It is interesting to note that it is not the initial TC
intensity that determines τ but the “storm moisture.” Storm moisture is defined as the
total moisture that a TC holds at the time of landfall. Li and Chakraborty [28]
conducted numerical simulations using a three-dimensional, non-hydrostatic, non-
linear, time-dependent computational model that had been used to study the dynam-
ics of idealized hurricanes. They simulated four TCs under different SST conditions.
Although the simulated TC intensity at landfall was set at 60 ms�1 and identical for
all TCs, the τ was larger when the SSTwas higher (Figs. 7a, b). They also conducted
additional “dry experiments” in which moisture was removed at the time of landfall,
and the results showed no difference in TC intensity and τ among the four TCs after
landfall (plus symbols in Fig. 7a), indicating that it is the total moisture at landfall
that causes the difference in τ. This means that warmer SST can enable a TC to hold
more moisture over the ocean (i.e., the Clausius–Clapeyron relation), which then
makes the TC survive longer over land. Therefore, it is likely that global warming
will make TCs last longer over the land surface. Li and Chakraborty [28] also

1104 H. Murakami



indicated that an eastward shift in TC tracks in the NA may be related to the
increasing τ. Although the reason is unclear, the decay in the northeast USA is
climatologically slower than the decay in the southeast USA. Overall, there is a
significant positive trend in the mean duration of TCs staying over the land surface,
and this trend may be related to the surface ocean warming over the tropical
NA. However, it is still not clear if the observed trends in duration and SSTs
over the period 1967–2018 were purely due to global warming induced by increased
CO2, as previous studies have also indicated that SST warming has been influenced
by the decreasing trend in anthropogenic aerosols and/or multidecadal natural
variability [18].

An increasing trend in the duration of TCs staying over land has also been
observed in the WNP. Chen et al. [29] documented that there was an increasing
trend in the annual average overland duration of a TC over mainland China during
the period 1975–2009. Liu et al. [30] extended the analysis using the observed data
up to 2018 and reported that TCs have shown a tendency over the past 40 years to
last longer after making landfall over mainland China (Fig. 8). Although the
frequency of TCs making landfall over mainland China shows no apparent

(a) (b)

(c)

Fig. 6 North Atlantic landfalling hurricanes and the effect of sea surface temperature (SST) on the
decay of hurricanes. The 71 landfalling hurricane events during 1967–2018 were analyzed. (a)
Observed hurricane tracks during 1967–1992 (blue) and 1993–2018 (red). (b) Histogram and
probability density of τ, which is a measure of the mean duration of landfalling TCs. The average τ
increases from 21.2 � 1.3 h (1967–1992, 26 events) to 28.4 � 2.4 h (1993–2018, 45 events). The
error bars in the histogram are computed using the bootstrap sampling method and correspond to �1
standard deviation. (c) Interannual variation of τ (black) and SSTover the tropical Atlantic (10–35�N,
75–100�W). (Adapted from Li and Chakraborty [28]. Used with permission from Springer Nature)
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increasing or decreasing trend over the period 1980–2018 (Fig. 8a), there is an
increasing trend in the mean duration of TCs over land (Fig. 8b), as well as an
increasing trend in the mean TC intensity at landfall (Fig. 8c) and a weak increasing
trend in the mean TC translation speed over land (Fig. 8d). Liu et al. [30] attributed
the increasing trend in mean TC duration over land to an increasing trend in the
traveling distance over land from the coastline and the northward shift in TC tracks
over mainland China. Moreover, Liu et al. [30] highlighted that the decrease in the
intensity of the weakening rate after landfall must be the factor responsible for the
longer duration of TCs over land, which is consistent with the findings of Li and
Chakraborty [28]. Liu et al. [30] reported that these trends in the mean TC duration
over land could be linked to the increasing SSTs in the coastal region of mainland
China, which provide favorable conditions for increasing the TC intensity prior to
landfall. In addition, increases in land-surface temperature and soil moisture and a

Fig. 7 Effect of sea surface temperature (SST) on the decay of simulated landfalling hurricanes.
Four different hurricanes were simulated using a dynamical model prescribed with different SSTs.
(a) Maximum wind speed (V ) versus time (t) relative to landfalling time. For t< 0, the TCs develop
over warm oceans. The different colors represent different SSTs. At t ¼ 0, the hurricanes make
landfall with V ≈ 60 m s�1. The solid lines correspond to the moist simulations and the plus symbols
to the dry simulations. (b) τ versus SST. (c) Rainfall versus SST. (Adapted from Li and Chakraborty
[28]. Used with permission from Springer Nature)
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lower tropospheric humidity are the thermodynamic conditions favorable for
increasing the mean overland duration of TCs after landfall. As in Li and
Chakraborty [28], it is not clear if the trends are due to anthropogenic climate change
or natural internal variability. Indeed, previous studies have shown the importance of
the IPO, which is an apparently internal variability at the decadal time scale that
manifests as a low-frequency El Niño-like pattern of climate variability for the SSTs
over theWNP. A recent negative phase of the IPO (1998–2013) was characterized by
a La Niña-like SST anomaly pattern in the tropical Pacific with more significant
warming in the northwest and southwest Pacific that also led to increasing SSTs near
the coast of mainland China. The IPO changed sign around 2013 to a positive phase.
Indeed, the time series of the mean duration of TCs over land after landfall appears to

Fig. 8 Time series of the (a) number of landfalling TCs over mainland China, (b) average TC
duration [h], (c) average intensity [m s�1], and (d) average translation speed [m s�1] after landfall in
the peak TC season of July–October during 1980–2018. Thick black lines denote the 5-year running
average, and the blue lines indicate the corresponding linear trends. (Adapted from Liu et al. [30].
@American Meteorological Society. Used with permission)
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be correlated with the IPO (Fig. 8b). Further studies using climate models will help
improve our understanding of the cause of these observed trends.

5 Pseudo-global Warming and Hindcast Attribution
Experiments

As indicated in the previous section, there are some significant observed trends in TC
activity that might be related to anthropogenic climate changes. However, it is
challenging to identify the causes of these trends just by analyzing observed datasets,
and we therefore rely heavily on numerical experiments for this purpose. The large-
ensemble-experiment method, which was introduced in the previous section, is
useful to explore whether any observed trends in TC activity were likely related to
anthropogenic climate changes in the past. However, there is a large gap between
scientific and public interests; the public is far more interested in specific TCs and/or
TC seasons rather than the mean changes in basin-scale or global TC activity.
Specifically, the major public interest is the relevance of any climatic change to
the occurrence of individual TCs or TC seasons. For example, there was strong
public interest regarding the extent to which anthropogenic climate change contrib-
uted to the occurrence of extreme TCs such as Hurricane Katrina in 2005 and/or an
extreme hurricane season, such as in 2020, in which a record 30 named storms were
observed in the NA. However, scientific knowledge is far too limited to answer
specific questions such as these, and this is mainly because the occurrence of
individual TCs and extreme hurricane seasons is substantially chaotic in general
(i.e., small signal-to-noise ratio). Thus, it is challenging to quantify the effect of
climatic changes on individual TCs and hurricane seasons, specifically in terms of
their probability of occurrence. Despite this challenge, there are recent studies that
have attempted, using high-resolution models, to attribute some aspects of individual
extreme events in the form of individual TCs or hurricane seasons to anthropogenic
forcing. A detailed review of this methodology is available in Wehner et al. [31], so
only a brief introduction and summary of recent studies are provided here, as
follows:

First, there are recent studies that have applied the so-called “pseudo-global
warming” experiments to individual storms to quantify the effect of anthropogenic
warming on their storm intensity [31–33]. This type of experiment is also called
“hindcast attribution.” Unlike modeling studies using global models as introduced in
the previous section, these studies utilized regional models. Generally, regional
models need lateral boundary conditions as well as surface boundary and initial
conditions. A pair of experiments is used for pseudo-global warming experiments.
The first is the control experiment in which an actual TC is simulated given realistic
initial, lateral, and surface boundary conditions derived from observations or
reanalysis data. This control experiment is the same as dynamical model simulations
applied in weather forecasts in which realistic simulations of TC tracks and intensity
relative to observations are required for the following counterfactual experiment,
which is the second experiment of the pair. In these experiments, expected
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perturbations due to global warming are removed from (or added to) the lateral
boundary and initial conditions used in the control experiment. Therefore, if a
reanalysis dataset is used for the boundary condition in the control experiment,
then the only additional counterfactual experiment conducted is one in which the
perturbations are added (removed) to (from) the original lateral boundary conditions
for each time step. The perturbations are generally derived from climate model
simulations by global models. The common variables used to remove or add the
perturbations are thermodynamic parameters such as atmospheric temperature and
specific humidity. For example, suppose there is a present-day climate simulation
using a global model as well as a pre-industrial climate simulation in which
greenhouse gases are fixed at the pre-industrial level. The perturbations are defined
as the differences in the simulated mean large-scale parameters between the present-
day and pre-industrial simulations. These perturbations are removed from the lateral
boundary conditions used for the control experiment so that the same TC can be
simulated under the same synoptic-scale conditions but with the mean pre-industrial
climate. There are a few advantages to using regional models over global models.
For example, regional models can save on computational resource. Moreover, some
of these models apply a non-hydrostatic framework so that high-resolution config-
urations with cloud systems being directly simulated can result in more realistic
simulations of TC intensity. Such pseudo-global warming experiments are used to
estimate how much anthropogenic warming contributed to changes in TC intensity
for a specific TC in terms of maximum wind speed or precipitation. Therefore, this
method cannot establish whether anthropogenic warming might have caused a
change in occurrence of the TC itself because the experiments are conducted from
the initial conditions under which the targeted TC already existed. In addition, a
disadvantage of the method is that it assumes the TC track will not change under a
different climate. This assumption is made because the estimated thermodynamic
effect of anthropogenic warming on TC intensity can be estimated only when the TC
track is the same between the control and counterfactual experiments. Otherwise, the
simulated changes in TC intensity could be mixed up due to anthropogenic warming
and/or simply the differences in the simulated TC tracks. Therefore, perturbations
are not added to dynamical parameters such as the zonal and meridional winds
because these perturbations can cause changes in TC tracks. Given that many
previous studies using global models have suggested that changing the climate can
also alter the mean TC tracks [34, 35], this assumption of unchanging TC tracks under
different climates may not be justified and may not fully explain the effect of
anthropogenic warming on individual TC activities. It is also expected that wind fields
are tightly linked to temperature fields under the thermal wind relation, meaning
altered temperature and humidity fields may not be balanced with wind fields.

Patricola and Wehner [32] applied pseudo-global warming experiments to
15 major TC events that occurred in the NA and Pacific using the Weather Research
and Forecasting (WRF) regional climate model developed by the National Center for
Atmospheric Research. They conducted counterfactual pre-industrial experiments as
well as future experiments under the Representative Concentration Pathway (RCP)
4.5, 6.0, and 8.5 scenarios for each storm. Figure 9 and Table 2 show the simulated

44 Tropical Cyclones in Changing Climate 1109



Fig. 9 Time series and boxplots of TC maximum 10-m wind speed. (a–c) Time series of
maximum 10-m wind speed [kt] from observations (black) and the ensemble mean of the
pre-industrial (blue), historical (gray), and RCP8.5 (red) simulations of Hurricane (a) Katrina at
3-km resolution, (b) Irma at 4.5-km resolution, and (c) Maria at 4.5-km resolution. (d–f) Boxplots
of peak 10-m wind speed [kt] from the 10-member ensemble of pre-industrial (blue), historical
(black), and RCP8.5 (red) simulations of (d) Hurricane Katrina at 3-km, 9-km (with and without
convective parameterization), and 27-km resolution, and Hurricane (e) Irma and (f) Maria at 4.5-
km resolution. The center line denotes the median; box limits denote the lower and upper
quartiles; and whiskers denote the maximum and minimum. The observed peak intensity is
marked with a horizontal black line. Simulations that used convective parameterization are
denoted by an asterisk. (Adapted from Patricola and Wehner [32]. Used with permission from
Springer Nature)
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TC intensity. They first tested the dependency of the model resolution on the results.
By using the four different horizontal resolutions of the WRF model (i.e., a 27, 9, 3,
and 4.5 km mesh), they applied the pseudo-global warming experiments to Hurri-
cane Katrina (Table 2). They found that all resolutions generally showed an increase
in maximum wind speed by around +11–13.8 knots under the RCP8.5 scenario
relative to the present-day climate, revealing that the difference in model resolution
did not severely alter the results. They also conducted the experiments with and
without cumulus parameterization in the regional model, and the results showed
minimum uncertainty for the sign of the projected changes in TC maximum wind
speed and rainfall. These findings instill greater confidence in projections of TCs by
models with parameterized convection and a resolution fine enough to include TCs.
Overall, they showed that future anthropogenic warming would robustly increase the
TC maximum wind speed and rainfall of 11 of 13 intense TCs. On the other hand,
they also showed that the climate change between the present-day and pre-industrial
conditions might have enhanced the average and extreme rainfall of hurricanes
Katrina, Irma, and Maria, but did not significantly change the TC maximum wind
speed.

Similar pseudo-global warming experiments were conducted by Reed et al. [33] for
Hurricane Florence. Unlike the study by Patricola et al. [32], Reed et al. [33] utilized a
high-resolution global atmospheric model (the Community Atmosphere Model, ver-
sion 5) with a variable resolution configuration involving 30 vertical levels, a base
horizontal grid spacing of 110 km, and a refined region over the NA with a grid
spacing of roughly 28 km. The model simulations were initialized with the atmo-
spheric and ocean surface analysis derived from the National Oceanic and Atmo-
spheric Administration’s Global Forecast System. The model was initialized every
12 hours starting from 9 September at 12Z to 12 September at 00Z. There were
96 ensemble members in total for the pseudo-global warming and control experiments.
The control experiment was called the “Actual” experiment, which involved hindcast
experiments forced with the observed conditions (i.e., the actual world). The counter-
factual experiment was referred to as “Counterfactual,” in which the estimated signal
of climate change was removed from the initial conditions for the three-dimensional
air temperature, specific humidity, and two-dimensional SSTs. The signal was prelim-
inarily computed from long-term climate experiments. Also, in the Counterfactual
experiments, the greenhouse gas concentrations, solar radiation conditions, ozone
concentrations, and aerosol concentrations were all set to their levels in the year
1850 to mimic the pre-industrial climate. Figure 10a shows the simulated and observed
storm track for Hurricane Florence initialized at 0Z on 11 September, in which the
simulated tracks by the Actual (red) and Counterfactual (blue) experiments resemble
the observed tracks. Figure 10b shows the simulated total accumulated rainfall over
land, revealing significant increases in total rainfall over land by the Actual experi-
ments compared to the Counterfactual experiments. This suggests that the severe
rainfall over land during the landfall of Hurricane Florence is attributable to the
changes in anthropogenic climate change. Overall, Reed et al. [33] concluded the
following from their pseudo-global warming experiments:
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1. Hurricane Florence would have been slightly more intense for a longer portion of
the forecast period due to climate change.

2. The rainfall amounts of Hurricane Florence over the Carolinas would have
increased by over 50% due to climate change and were linked to warmer SSTs
and available moisture in the atmosphere.

3. Hurricane Florence would have been about 80 km larger because of the effect of
climate change on the large-scale environment around the storm.

Note that Reed et al. [33] conducted these experiments in real time when
Hurricane Florence was about to make landfall. They made these statements
2 days before the landfall of Hurricane Florence. This “real-time attribution” was
made based on simulations using the hindcast attribution method before the real
hurricane made landfall, but was expected to make landfall. This real-time attribu-
tion approach is useful for providing timely information for the public regarding the
relationship between concurrent TCs and climate changes.

6 Attribution Experiments Based on Seasonal Predictions

Event attribution has also been applied to unprecedented TC seasons to identify the
physical mechanisms underpinning their occurrence in relation to climate changes
[16, 36, 37]. For example, Murakami et al. [36] studied the active MH season in
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Fig. 10 (a) Observed and simulated storm tracks by Reed et al. [33]. Model simulated TC tracks of
the 7-day Actual (red) and Counterfactual (blue) forecasts initialized on 00Z, 11 September 2018.
Solid lines are the ensemble mean, and dashed lines are the individual ensemble members. Black
lines are the observed track. Black dots on the ensemble mean tracks represent the locations of the
hurricane center at 12-hour intervals. (b) Simulated changes in total accumulated rainfall within
200 km and 48 hours of the model landfall for the Actual (red) and Counterfactual (blue)
11 September 00Z ensembles. Dashed lines are Gaussian fits to the data. Only 96 ensemble
members that made landfall within 200 km of the observed landfall location were included. The
observations are marked with the vertical black line. (Adapted from Reed et al. [33]. Licensed under
CC BY-NC-ND 4.0)
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2017 in the NA using a high-resolution seasonal prediction model. The 2017
hurricane season in the NA was highly active, with six MHs, including three that
made landfall (hurricanes Harvey, Irma, and Maria; Fig. 11a). These MHs were
largely concentrated in the tropical NA (Fig. 11b). Given the mean number of MHs
in the NA is around 1 per year, this unprecedented event of Atlantic MHs attracted

(d) 

(a) 

(b) 

(c) (e) 

Fig. 11 (a) Observed tropical cyclones during the hurricane season in 2017. Storm tracks are
colored according to the intensities of the storms, as categorized by the Saffir–Simpson hurricane
wind scale (TS, tropical storm; C1–C5, category 1 to category 5 hurricanes). Labeled storms denote
major hurricanes (MHs). (b) Observed MH density anomaly in the 2017 hurricane season relative to
the mean of 1980–2017 (number per 2.5� � 2.5� grid box per season). (c) Observed sea surface
temperature (SST) anomaly (units: K) in the 2017 hurricane season relative to the mean of the
period 1982–2012. The black frames are the possible key regions for the unusually high MH
activity in 2017. (d, e) As in (b, c) but for the ensemble mean of real-time seasonal predictions from
1 July 2017 initials predicted by the HiFLOR model developed by the Geophysical Fluid Dynamic
Laboratory. (Adapted from Murakami et al. [36]. @Science. Used with the author’s copyright)

44 Tropical Cyclones in Changing Climate 1115



considerable attention throughout the scientific community and broader society, not
only in terms of the causes but also whether anthropogenic warming played a role.
Several large-scale factors might have caused the active MH season. As shown in the
SST anomaly in 2017 (Fig. 11c), the summer of 2017 was characterized by a
developing moderate La Niña (“A” in Fig. 11c). It is well known that during a La
Niña summer, hurricanes are generally more active over the NA due to a weakening
vertical wind shear in the tropical Atlantic. It is also clear that the surface ocean was
substantially warmer in the tropical NA (region “B” in Fig. 11c), which is a region
where many MHs generate [i.e., the main developing region (MDR)]. In addition, a
substantial positive SST anomaly was also observed over the coastal regions (region
“C” in Fig. 11c). It is expected that TCs obtain more energy from warmer oceans and
then further develop into MHs. This particularly active MH season in 2017 and the
associated SSTs were predicted well in the real-time seasonal prediction starting
from 1 July 2017 using a high-resolution global coupled model (Fig. 11d). To clarify
the relative importance of the SST anomalies over the three key domains on the
active MHs in the NA, Murakami et al. [36] conducted a series of idealized seasonal
predictions by modifying the predicted SSTs as lower boundary conditions. Using
the same model and initial conditions, they reforecast the same 2017 summer except
that the modified SSTs were prescribed in the lower boundary conditions (Fig. 12).
Through a series of idealized experiments, replacing the Atlantic SSTs with the
climatological mean SST (Fig. 12d) was found to exert a substantial impact on the
predicted Atlantic MHs, although the La Niña-like SST anomaly in the Pacific did
not play an important role (Fig. 12b). Specifically, modifying the SSTs over the
MDR (Fig. 12f) changed the MHs significantly compared to the original experiment,
indicating a key role played by the warm MDR SSTs on these active MHs in 2017.
These results indicate that the SST anomaly over the tropical Atlantic was the most
important cause of the active 2017 MH season in the NA. Murakami et al. [36] also
conducted additional future experiments to mimic a similar summer to that in 2017
but in a future warmer climate. The 2017 SSTanomalies (left-hand panel of Fig. 12a)
were superimposed onto the future SSTs projected under the RCP4.5 and RCP8.5
experiments, separately. The greenhouse gas concentration in the model also mod-
ified to the anticipated future level. The numbers of projected MHs are shown in
Fig. 13. Compared with the experiments prescribed with the 2017 SST anomalies
superimposed on the mean present-day SSTs (CLIM+), the simulated numbers of
MHs were larger for the experiments prescribed with the 2017 SST anomalies
superimposed on the future mean SSTs (RCP4.5+ and RCP8.5+). These results
indicate that increases in mean SST due to anthropogenic warming will amplify
the risk of MHs in the future. Note that Murakami et al. [36] utilized predicted SSTs
rather than observed SSTs for the lower boundary conditions in their idealized
seasonal experiments, and this was because they started the attribution study during
the 2017 hurricane season (i.e., real-time event attribution). One of the merits for
real-time attribution studies using seasonal forecast models is that they can tell a
forecaster about the relevant domains of SST anomalies, which is the most important
aspect for hurricane activity even if the hurricane season is underway. Another
advantage is to inform the public how much anthropogenic climate changes are
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Fig. 12 Prescribed idealized sea surface temperature (SST) anomaly and resultant predicted major
hurricane (MH) density by a seasonal prediction model. Idealized seasonal reforecasts conducted by
prescribing the idealized SSTs in which SST anomalies (SSTAs; left-hand panels; units: K) are
superimposed onto the climatological mean SST (CLIM). The resultant predicted MH density
anomalies (MHDAs) relative to the CLIM experiment are shown by the shading in the right-hand
panels (units: number per season). The prescribed SSTAs are (a) all 2017 anomalies (CLIM+); (b)
as in CLIM+, except the Pacific SSTAs are set to zero (PCLIM); (c) as in CLIM+, except the Pacific
SSTA is replaced with the SSTA predicted by 1 April 2017 initial predictions, predicting El Niño
conditions (PEL); (d) as in CLIM+, except the Atlantic SSTA is set to zero (ACLIM); (e) as in
CLIM+, except the SSTA off the coast of North America is set to zero (GCLIM); and (f) as in CLIM+,
except the SSTA in the tropical Atlantic is set to zero. Contours in the right-hand panels denote the
mean MH density predicted from the CLIM experiment. The contour interval is 0.6 per season.
Cross marks in the right-hand panels indicate the predicted change relative to the CLIM experiment
is statistically significant at the 90% confidence level or above. (Adapted fromMurakami et al. [36].
@Science. Used with the author’s copyright)
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relevant to the occurrence of an extreme hurricane season happening in real time. We
can conduct these attribution experiments even after obtaining observed SSTs for
more accurate estimation of the impact of SST anomalies on the active hurricane
season. However, these observed SSTs are available only a few months behind real
time, meaning timely information on the relationship between climate changes and
extreme hurricane seasons is not available. A caveat is that event attribution using
simulated SSTs assumes that the seasonal predictions of SSTs are accurate. Gener-
ally, due to the known spring predictability barrier phenomenon [38], tropical SST
predictions initialized before spring show lower skill relative to those after spring.
Therefore, long-lead-time seasonal predictions and attribution experiments initial-
ized before spring could involve substantial uncertainty in their results; plus, there is
also uncertainty related to the issue of model dependency, i.e., if a different model is
used, the results could also be different.

A similar event attribution approach was also applied to the active TC season of
2018 in the Pacific [37]. There were 39 tropical storms (maximum surface wind
speed �17.5 ms�1) observed over the North Pacific in the 2018 TC season, with
8 storms becoming Category 5 super storms (maximum surface wind speed

Fig. 13 Boxplots for the predicted major hurricane (MH) frequency over the North Atlantic
according to various predicted sea surface temperature anomaly patterns. The red squares denote
the ensemble mean, while the black dots show each ensemble member (12 members). The boxes
represent the lower and upper quartiles; the horizontal lines in the middle show the median value;
and the horizontal end lines show the lowest (highest) datum still within the 1.5 interquartile range
of the lower (upper) quartile. (Adapted from Murakami et al. [36]. @Science. Used with the
author’s copyright)
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�70.6 ms�1) and 21 out of the 39 TCs making landfall. The observed number of
storm days (SDAY; the total number of TC days throughout the TC’s lifetime) was
228.3 for the 2018 TC season, exceeding 1.1 standard deviations above the mean.
The 2018 TC season was characterized by moderate El Niño conditions, although
the peak of the SST anomaly was in the tropical Central Pacific (Fig. 14a). There was
also marked warming in the subtropical Pacific, practically associated with a positive
phase of the Pacific Meridional Mode (PMM, Fig. 14a). The close connection
between TCs in the Pacific and the PMM has been identified in previous studies
[39]. Therefore, it is unclear which of the warm conditions—those generated by El
Niño or PMM—caused the active TC season in 2018. Unlike Murakami et al. [36],
Qian et al. [37] utilized three different dynamical models for their idealized attribu-
tion experiments, to avoid any dependency of the results on the model choice: (i) the
Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-oriented Low Ocean
Resolution global coupled model (FLOR), (ii) the Meteorological Research Institute
(MRI) Atmospheric General Circulation Model (MRI-AGCM3.2), and (iii) the
Nonhydrostatic Icosahedral Atmospheric Model (NICAM). First, they showed that
these three models reproduced the active 2018 TC season consistently in the Pacific
via experiments in which SSTs were forced by predicted SSTs using a seasonal
forecast model initialized on 1 July 2018 (Fig. 14a). Second, they conducted
idealized experiments by modifying the SST anomaly; they replaced it with zero
over the subtropical Pacific domain to estimate the effect of the warming induced by
the PMM (Fig. 14b). The experiments with the modified SST resulted in a markedly
decreased number of TCs over the Pacific, thus revealing a substantial impact of
subtropical warming on the active TC season in 2018. Another experiment was
forced with the same 2018 SSTanomaly except that the tropical Pacific SSTanomaly
was replaced with zero (Fig. 14c). The experiments with the SST resulted in a similar
SDAY to the original experiment (Figs. 14a, c), indicating that the moderate El Niño
conditions were not responsible for the active TC season in the Pacific in 2018.
Meanwhile, they also conducted future experiments like Murakami et al. [36] did, in
which the 2018 SST anomaly was superimposed onto the mean SSTs in the future
projected by FLOR under the RCP8.5 scenario along with the increased level of
greenhouse gas. The projected SDAY showed inconsistent results across the differ-
ent models (Fig. 14c). FLOR projected an increase in SDAY in the future, while
MRI-AGCM3.2 projected a decrease. This inconsistency among the models high-
lights the considerable uncertainty in the projected future changes in SDAY in the
Pacific. The model differences were specifically larger over the WNP than over other
open oceans. Qian et al. [37] argued that the opposite sign of the projected change in
SDAY over the WNP might come from the marked differences in the changes in
atmospheric stability as defined by the difference in potential temperature between
200 hPa and 850 hPa, as well as strength of the Indo-Pacific Walker circulation.
MRI-AGCM3.2 projected a large increase in atmospheric stability along with a large
weakening of the Walker circulation, whereas FLOR projected a small increase in
atmospheric stability and a small weakening of the Walker circulation. This uncer-
tainty in the response of large-scale conditions to an increase in anthropogenic
forcing leads to significant uncertainty in the projected future changes in TC activity.
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Fig. 14 Prescribed idealized sea surface temperature (SST) and storm day (SDAY) anomalies during
the 2018 TC season. SDAY is defined as the total number of TC days throughout the lifetime of TCs
counted for each 5� � 5� grid box for (a–c) and throughout the North Pacific for (d). Idealized seasonal
prediction conducted by prescribing the idealized SSTs in which SST anomalies (shading in left-hand
panels for a–c) are superimposed on the climatological mean SST. The resultant predicted multi-model
ensemble mean of SDAYanomalies relative to the control experiments in which the climatological SSTs
were prescribed is shown by the shading in (a–c). The contours in the right-hand panels in (a–c) indicate
the climatological mean SDAY simulated by the control experiment. The prescribed SST anomalies are
(a) all 2018 anomalies; (b) as in (a) except the SSTanomalies in the subtropical Pacific are replaced with
the climatological mean; and (c) as in (a) except the SST anomalies in the tropical Pacific are replaced
with the climatological mean. Hatched areas in (a–c) indicate the changes relative to the control
experiment on the grid cells are not statistically significant at the 95% confidence level. (d) Boxplots
for the predicted basin total SDAYover the North Pacific. Red filled (hollow) dots indicate the simulated
mean storm days simulated by the experiment is (not) statistically different from that of the control
experiment (i.e., CLIM) at the 95% significance level. The horizontal line represents the ensemble mean
of storm days in the control experiment. (Adapted from Qian et al. [37]. Used as open access)

1120 H. Murakami



Overall, unlike the Atlantic study by Murakami et al. [36], Qian et al. [37] concluded
that it is unclear how much anthropogenic forcing impacted the occurrence of the
active TC season in the North Pacific in 2018, due to model discrepancies. Their
study highlights the importance of multi-model approaches to attribution studies
owing to the uncertainty and model dependency on the effect of anthropogenic
forcing to projected changes in large-scale conditions and TC activity.

7 Projected Increases in Global TC Numbers in the Future

Thus far, some recent studies related to observed or historical TC activity associated
with anthropogenic climate changes have been reviewed. However, meanwhile,
there have also been some new studies published on the projected future changes
in TC activity, in which the results are somewhat different from past studies with a
similar focus. This section reviews a few of the studies showing projected increases
in global TC numbers in the future.

Many studies since the early 1990s have attempted to address the possible future
changes in TC activity. Based on studies published since 2006, Knutson et al. [40]
reviewed their findings and summarized the situation regarding the potential future
changes in TC activity, as follows:

1. Theoretical and high-resolution model results project an increase in the mean
maximum wind speed by 2–20% by the end of the twenty-first century.

2. Dynamical models project a decrease in the number of global TCs, by 6–34%, by
the end of the twenty-first century under the Intergovernmental Panel on Climate
Change (IPCC) A1B future scenario.

In addition, IPCC [1] discussed the potential future changes in TC activity by
assessing previous studies using climate models. Because model projections often
vary in terms of the details of the models, it is difficult to draw objective conclusions
from their combined results to form a consensus. In IPCC [1], the model results were
normalized using a combination of objective and subjective expert judgements. The
results are summarized in Fig. 15. Potential future changes in TC activity were
estimated for each ocean basin, as well as the hemispheric and global scale, in terms
of the annual number of TCs (Metric I), the annual number of category 4–5 TCs
(Metric II), the mean lifetime maximum TC intensity (Metric III), and the mean
precipitation rate induced by TCs (Metric IV). Figure 15 reveals that Metric I is
generally projected to decrease or remain unchanged in the next century globally as
well as in most ocean basins, although confidence in the projections is lower in
specific ocean basins than in global projections. Specifically, the models consistently
projected a decreased number of TCs in the ocean basins in the Southern Hemi-
sphere, while the projected future changes in the ocean basins of the Northern
Hemisphere varied remarkably. In contrast, Metrics III and IV, which represent the
mean TC intensity and TC precipitation rate, are relatively consistent among the
model studies. These metrics generally show projected increases in most ocean
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basins as well as at the global scale. Based on these studies, IPCC [1] concluded that
“It is likely that the global TC numbers will either decrease or remain essentially
unchanged, concurrent with a likely increase in both global mean TCmaximum wind
speed and precipitation rates.” Therefore, the science community to a certain extent
agrees with the projected decrease in global TC numbers in the future based on the
results of climate models, although the physical mechanism behind the decreases
were still not clear.

However, there have been new studies published showing projected increases in
the global number of TCs in the future. For example, Emanuel [41] applied a
statistical–dynamical downscaling technique to the outputs of eight CMIP5 (phase
5 of the Coupled Model Intercomparison Project) climate models. In short, this
downscaling technique applies a storm intensity model to TC tracks initiated by
random seeding in space and time and forward-propagates using a beta and advec-
tion model driven by winds derived from the output of dynamical climate models.
Note that in Emanuel [41], the rate of seed formation does not change with
anthropogenic warming. The results showed a decreasing number of TCs globally

Fig. 15 Assessment of the projected future changes in tropical cyclone activity made by the Fifth
IPCC report [1]. This consensus was reached by reviewing the modeling studies available by 2013.
All values represent the expected percent change on average over the period 2081–2100 relative to
2000–2019, under an IPCC A1B-like scenario, based on expert judgement after subjective normal-
ization of the model projections. Four metrics were considered: (I ) the total annual number of
tropical storms, (II) annual frequency of category 4 and 5 storms, (III) mean lifetime maximum
intensity (LMI; the maximum intensity achieved during a storm’s lifetime), and (IV) precipitation
rate within 200 km of the storm center at the time of the LMI. For each plot, the solid blue line is the
best guess of the expected percentage change, and the colored bar provides the 67% (likely)
confidence interval for this value. (Adapted from IPCC [1])
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under the RCP4.5 scenario (medium emissions scenario) but an increasing number
under the RCP8.5 scenario (high emissions scenario) relative to the present-day
climate. Using the same downscaling technique except that the large-scale condi-
tions were derived from the output of CMIP6 models, Emanuel [42] also projected
an increasing number of global TCs in a warmer climate. Figure 16a shows the
number of global TCs projected by the model. The blue line reveals the simulated
TC number during the historical period (1850–2014), while the red line denotes the
projected number of TCs under a future scenario in which the CO2 level is increased
by 1% per year from the present-day condition. This figure reveals significant
projected increases in the global number of TCs under future anthropogenic
warming. Emanuel [42] also showed that there is excellent correspondence between
the simulated number of global TCs in his model and the Genesis Potential Index
(GPI) calculated from the large-scale variables by CMIP6 models (green line in
Fig. 16a). The GPI has been widely applied alongside climate models [e.g., 34] to
diagnose the interannual and interdecadal variability of TC genesis towards better
understanding the mechanisms responsible for the variability of TC genesis.
Although there are several forms of GPI, the definition used in Emanuel [43] is as
follows:

GPI ¼ ηd e3χ4
3MAX Vpot � 35 , 0

2
25þ Vshearð Þ�4, ð2Þ

where η is the absolute vorticity of the 850 hPa level, capped by 5� 10�5 s�1; Vpot is
the potential intensity (hereafter referred to as PI); Vshear is the magnitude of the
850 hPa–250 hPa wind shear; and χ is the moist entropy deficit. The moist entropy
deficit is defined as

χm ¼ sm � s�m
s�o � sb

, ð3Þ

where sm is the environmental moist entropy at 600 hPa, sm
* is the saturation entropy

at 600 hPa in the inner core of a TC, so
* is the moist entropy of air saturated at SST

and pressure, and sb is the moist entropy of the boundary layer. To calculate moist
entropy, the pseudo-adiabatic entropy is defined as follows:

s ¼ cp log Tð Þ � Rd log pdð Þ þ Lvorv
T

� Rvrv log Hð Þ, ð4Þ

where cp is the specific heat at constant pressure for dry air; T is the temperature; Rd

is the gas constant for dry air; pd is the partial pressure of dry air; Lvo is the latent heat
of vaporization (set at 2.555 � 106J kg�1); rv is the water vapor mixing ratio; Rv is
the gas constant for water vapor; and H is the relative humidity. PI represents an
attainable maximum storm intensity that is theoretically derived given the three-
dimensional thermodynamical large-scale conditions, such as atmospheric tempera-
ture, humidity, and SST. The formulation of PI is as follows:
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(b)

Fig. 16 (a) Annual global number of simulated tropical cyclones. Solid curves represent multi-
model means, and shading indicates one standard deviation up and down. Dashed lines show linear
regression trends. Blue indicates the historical period of 1850–2014, while red shows the 1% yr.�1

CO2 increase experiment beginning in 1970. Green curves show the multi-model mean, globally
summed genesis potential index (GPI). (b) Each term’s contribution to the total GPI in terms of the
right-hand side of Eq. 6. The contributions are from vorticity, χ, potential intensity (PI), and vertical
wind shear. The black curve shows their sum. (Adapted from Emanuel [42]. @American Meteo-
rological Society. Used with permission)
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upi � Ck

CD

Ts � To

To
h�o � h� , ð5Þ

where Ck is the surface enthalpy exchange coefficient; CD is the surface momentum
exchange coefficient; Ts is the SST; To is the outflow temperature; h�o is the saturation
moist static energy of the sea surface; and h� is the saturation moist static energy of the
free troposphere. PI consists of two key factors: thermodynamic efficiency (Ts�To

To
) and

an air–sea disequilibrium term (h�o � h�).
The GPI (Eq. 2) indicates that TC genesis is more favorable under a large-scale

environment in which the background vorticity is cyclonic in the lower troposphere,
the moist entropy deficit is larger, the PI is larger, and the vertical wind shear is
smaller. This GPI was summed over the globe and averaged among the CMIP6
models that were used for the downscaling technique of Emanuel [40] (green line in
Fig. 16a), and the results showed good agreement with the increase in the global
number of TCs. The benefit of the GPI is that one can compute each term’s
contribution to the total GPI value. The logarithm is taken on both sides in Eq. 2,
as follows:

log GPIð Þ ¼ 3 log ηb cð Þ � 4

3
log χð Þ þ 2 log MAX Vpot � 35 , 0

� 4 log 25þ Vshearð Þ, ð6Þ
Figure 16b shows the contribution of each term in Eq. 6 to the temporal evolution

of the GPI, revealing that an increase in entropy deficit (red) could serve as a
negative factor for the GPI. On the other hand, the negative effect from the entropy
deficit is offset by a positive effect from the PI (yellow), as well as the vertical wind
shear (magenta) and vorticity (blue). The PI becomes larger when the outflow
temperature (i.e., temperature in the upper troposphere) becomes lower and/or the
SST is higher. Given the projected increases in static stability in the future caused by
the increased temperature in the upper troposphere, the projected increase in SST
dominates the increased PI. It appears that the downscaling technique of Emanuel
[42] is more sensitive to the thermodynamic parameters, especially the SST changes,
although a number of dynamical climate models have shown a decreased global
number of TCs despite the increase in SST under a warming climate. Despite the
increased GPI associated with the PI, Emanuel [42] still did not articulate clear
reasons for the projected increase in the global TC number by using the downscaling
technique. Meanwhile, Emanuel [42] also indicted that the results of conventional
dynamical models might have underestimated smaller-scale disturbances that
became broader in structure in a warmer climate. It should be noted that most studies
using conventional dynamical models explicitly simulated TCs with global atmo-
spheric or coupled general circulation models whose horizontal resolutions varied
from 14 to 200 km. Most of these models may under-resolve TCs, as well as the
mesoscale process observed to be involved in their genesis. Simulated TCs that
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develop in such models are detected using a storm-detection algorithm, and the
counts of TCs are known to be sensitive to how that algorithm is formulated.
Specifically, climate change may alter the scale of simulated TCs, pushing events
across arbitrary detection thresholds and thereby leading to false trends in the
number of weak events. For example, weaker TC-like disturbances could become
broader as the climate warms, meaning their vorticity may decrease below the
imposed vorticity thresholds used in many detection methods so that the detection
algorithm may overlook TC genesis events with broader TC structure.

A similar statistical–dynamical downscaling technique was also developed and
applied to CMIP5 models by Lee et al. [44]. Unlike the downscaling technique of
Emanuel [42], in which the ratio of the number for the random seeding of TC genesis
is fixed, Lee et al. [44] applied a variable seeding rate that depends on the environ-
mental conditions through the GPI developed by Tippet et al. [45]. The seeding rate
is formulated as follows:

μ ¼ exp bþ bηη850,c þ bCRHCRH þ bPIPI þ bSHRSHR , ð7Þ
where μ is the estimated seeding rate; b is the intercept; bX represents the coefficient
of parameter X; η represents the absolute vorticity at 850 hPa, with the subscript
c indicating that this GPI uses absolute vorticity clipped at 3.7 � 10�5 s�1; CRH
represents column-integrated relative humidity; PI represents potential intensity; and
SHR represents deep-layer (850–250 hPa) vertical wind shear. This GPI is referred
as CRH GPI. Tippet et al. [45] also proposed a slightly different GPI formulation as
follows:

μ ¼ exp bþ bηη850,c þ bSDSDþ bPIPI þ bSHRSHR , ð8Þ
where SD represents the saturation deficit, as defined in Eq. 3. Hereafter, this GPI is
referred to as SD GPI. They computed monthly GPIs using the large-scale param-
eters derived from CMIP5 models running the historical and future experiments
under the RCP8.5 scenario. Based on these GPIs, seeding rates were determined
from Eq. 7 or 8, and a similar downscaling technique to that of Emanuel [42] was
applied, in which advection model computes the trajectory of storms and a hurricane
model simulates the storm intensity. Lee et al. [44] applied the downscaling by using
the CRH GPI and SD GPI separately, and these experiments were referred to as
TCGI_CRH and TCGI_SD, respectively. Figure 17 reveals that the projected future
changes in the global number of TCs are totally the opposite between TCGI_CHR
and TCGI_SD. When CRH was used, most of the results showed projected increases
in TC numbers in the future, whereas, when SD was used, they showed projected
decreases. The results were totally dependent on the random seeding rate (Fig. 17b),
where SD GPI led to a decreasing trend toward the end of the twenty-first century,
while CRH GPI led to an increasing trend in the random seeding rate. It is difficult to
identify which of the results is the more plausible because both experiments showed
similar evolution during the historical period (1980–2013) relative to observations
(Fig. 17a). As indicated by Emanuel [42] and Lee et al. [44], the projected future
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changes in the global number of TCs are largely dependent on the large-scale
parameters derived from global models. Specifically, the dependency of the results
on the thermodynamic parameters is large in the statistical-downscaling technique.
Previous studies indicate that the large-scale controlling variables for TC genesis
would be different between the present-day climate and projected future climate
[46, 47]. Specifically, the GPI formula had been optimized using reanalysis data to
represent TC genesis frequency in the present-day climate. Because the validity of
applying GPI formula to future climate had not been justified, the projected future
changes in TC genesis number based on the GPI may include uncertainty in the
statistical–dynamical technique.

There is also a dynamical climate model that projected an increase in the global
number of TCs in a warmer climate. Vecchi et al. [48] utilized a coupled global
climate model with increasingly refined atmosphere/land horizontal grids (50-km
mesh GFDL FLOR model; 25-km mesh GFDL HiFLOR model). In a warmer
climate forced with doubling CO2 along with increased SST, the simulated global
number of TCs markedly decreases in the FLOR model relative to the present-day
climate, while the HiFLOR model shows an increasing change (blue bars in Fig. 18).
They also conducted additional idealized experiments in which either CO2 (gray bars
in Fig. 18) or SST (red bars in Fig. 18) was increased separately. Both models
showed an increasing number of TCs under increased SST only but a decreasing
number of TCs under increased CO2 only. However, HiFLOR showed larger
(smaller) increases (decreases) under increased SST (CO2) than FLOR did
(Fig. 18). This indicates that the changes in the global number of TCs depend on
the model’s sensitivity to increasing CO2 and SST. Vecchi et al. [48] also

Fig. 17 Time series of (a) the simulated annual global number of tropical cyclones (TCs), (b) the
simulated seeding rate, and (c) the survival rate of the synthetic storms. Thin lines show downscal-
ing results from each of the CMIP5 models, indicated by color. The box-and-whisker diagram in (a)
shows the median (orange) and the fifth, 25th, 75th, and 95th percentiles. The thick blue and red
lines show the ensemble mean from the TCGI_CHR and TCGI_SD experiments, respectively.
(Adapted from Lee et al. [44]. @American Meteorological Society. Used with permission)

44 Tropical Cyclones in Changing Climate 1127



investigated why HiFLOR projected an increasing global number of TCs in a
warmer climate by analyzing projected changes in the large-scale parameters, such
as the GPI developed by Emanuel [41] (Eq. 2), the ventilation index developed by
Tang and Emanuel [49], and the vertical p-velocity with respect to the mass flux.
These were all argued in past studies as potential causes for future changes in global
TCs [42, 49–51]. The ventilation index was developed by Tang and Emanuel [49]
and is a combination of entropy deficit and vertical wind shear, as follows:

Λ � usχm
upi

, ð9Þ

where Λ is the non-dimensional ventilation index; us is vertical wind shear; χm is the
entropy deficit, defined in Eq. 3; and upi is the potential intensity, defined in Eq. 5. A
larger ventilation index implies an unfavorable large-scale environment for TC
genesis and intensification.

First, the changes in the GPI (Fig. 19a) show positive correlations with the model-
simulated changes in the global number of TCs within the individual models of
FLOR and/or HiFLOR (red and gray lines). However, it cannot explain the differ-
ences between models. For example, even with the same degree of changes in the
GPI, HiFLOR tends to project increased storm numbers, while FLOR tends to
project decreased storm numbers. Second, the changes in ventilation index
(Fig. 19b) do not account for both the intra- and inter-model differences in the

Fig. 18 Response of the global number of TCs in idealized experiments: leftmost bars are for the
FLOR model; the second set of bars is for the HiFLOR model; and the rightmost bars show the
difference between HiFLOR and FLOR. The blue bars show the response to a combined uniform
2 K warming and a CO2 doubling, the gray bars show the response to CO2 doubling with fixed SST,
and the red bars show the response to a uniform 2 K warming. Black lines show the 95% confidence
interval of the change. (Adapted from Vecchi et al. [48]. Used as open access)
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changes in storm number. Third, it appears that the changes in vertical p-velocity
(Fig. 19c) are highly correlated with those in storm number relative to the GPI and
ventilation index. However, the regression lines show different offsets between
FLOR and HiFLOR, revealing different sensitivities of p-velocity to storm number
in these models. In summary, none of the large-scale parameters perfectly reflects
both the intra- and inter-model differences in the changes in storm number. Vecchi

Fig. 19 Fractional response in the global number of tropical cyclones (TCs) versus the fractional
response in spatially averaged large-scale parameters. Orange symbols show the responses of the
HiFLOR model and gray symbols those of the FLOR model. The dotted lines indicate the linear
least-squares regression fit with the covariance indicated by R2. Orange lines show the regression
for HiFLOR points, gray for FLOR points, and blue for all data combined. Each symbol is the
response of one idealized experiment relative to the present-day control experiment (e.g., doubling
CO2 experiments, +2 K uniform SST experiments, and the combined experiments). Fractional
response of the simulated global TC number is compared with the (a) tropical-mean response of the
GPI of Emanuel [41] (Eq. 8), (b) � 10–30� averaged inverse Tang and Emanuel ventilation index
[49], (c) 500 hPa pressure velocity, and (d) tropical cyclones “seed” index [53]. (Adapted from
Vecchi et al. [48]. Used as open access)
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et al. [48] further hypothesized that the projected changes in TC number are
influenced by the rate of pre-storm synoptic-scale disturbances: so-called TC
seeds. Because TCs originate from tropical disturbances such as synoptic wave
trains and easterly waves [e.g., 52], the number of TCs could depend on the
likelihood that these seeds develop into TCs. Moreover, the projected changes in
the number of TC seeds could be independent of those in the large-scale param-
eters. Following Li et al. [53], Vecchi et al. [48] analyzed a “seed index” in which
the variance of 3–10-day relative vorticity fields at 850 hPa was computed after
removing the TCs from the original vorticity fields. Figure 19d reveals that the seed
index represents both the intra- and inter-model differences among the model
experiments. Moreover, the regression lines are similar for the two models, indi-
cating its potential to be a universal index that quantifies the projected changes in
the global number of TCs in any climate model. Vecchi et al. [48] also noted that
TC genesis is a binomial process, in which the expected number of TCs depends on
the product of the number of seeds (i.e., trials) and the probability of success of
each trial developing into TC genesis. The large-scale parameter could influence
the latter. This hypothesis indicates that, even when the probability of a seed
developing into TC genesis is small as determined by the negative large-scale
conditions, the number of TC geneses could increase in cases with a larger number
of seeds. Indeed, HiFLOR projected an increase in seeds in a warmer climate,
which was the main reason for the projected increases in TC numbers despite the
unfavorable large-scale conditions, such as an increase in the mean ventilation
index and decrease in the mean upward p-velocity. Furthermore, Hsieh et al. [54]
separated the development of a TC into three stages, from a non-rotating convec-
tive cluster to a weakly rotating seed and to a strongly rotating TC. They revealed
that the initiation of convective clusters follows the large-scale vertical velocity,
the transition to seeds is controlled by the large-scale vorticity, and the transition to
TCs is controlled by entropy ventilation so that different large-scale parameters
differently and complicatedly control TC genesis. Although HiFLOR showed an
increase in the number of TC seeds in a warmer climate, it remains unclear as to
what controls the number of seeds. Sugi et al. [55] reported that two different
dynamical models showed projected decreases in the number of TC seeds in a
warmer climate. Further studies are needed in the future to clarify the projected
changes in TC seeds and the physical mechanisms dictating future changes in TCs.

8 Conclusion

This chapter has reviewed the observed climate changes in TCs over the last few
decades, as well as the projected future changes through the latest numerical
modeling studies that had not been covered in the previous literature reviews
[13, 14]. Generally, it is challenging to detect any long-term climatic changes in
global TC activity from observations because the availability of a reliable histor-
ical record of TCs is limited before satellite observations began to be made around
the 1980s. Also, there are substantial effects from natural multidecadal variability
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on global TC activity. Although some trends in the short-term observed record
appear to be statistically significant, it is difficult to distinguish such trends from
intrinsic multidecadal internal variability. However, given the now 40-year accu-
mulation of a reliable observed global TC record, in addition to recent advance-
ments made in the field of numerical climate modeling, some of the latest studies
have shed light on the effect of ongoing anthropogenic climate changes on the
trends in observed TCs. On the other hand, several recent modeling studies have
revealed substantial uncertainty regarding the potential future changes in global
TC activity.

Murakami et al. [18] revealed that climate changes in global TC activity during
1980–2018 were more evident in terms of the spatial pattern of TC occurrence,
rather than the overall global number of TCs. There is a distinct spatial pattern of
the trends in TCF (or TC density) on a global scale since 1980, with substantial
reductions in the South Indian Ocean and WNP and increases in the NA and
Central Pacific. They applied a new “large-ensemble simulation” technique with
fully coupled global climate models that allows one to better define a model’s
forced response and distinguish it from modeled natural variability, taking advan-
tage of ensemble statistics given a sufficiently large ensemble. They found that
external forcing, such as greenhouse gases, anthropogenic aerosols, and volcanic
eruptions, likely played an important role in the observed trend in TCF over the
period 1980–2018. They also indicated that the two volcanic eruptions that
occurred in the Northern Hemisphere in the 1980s and 1990s likely exerted
substantial influence on the global TCF by altering the hemispheric meridional
gradient of surface temperature, which in turn led to a meridional shift in TCF, as
also indicated by another recent study [20]. On the other hand, the model exper-
iments forced only with increased CO2, while other external forcings were kept
unchanged showing decreasing trends in TCF over the NA, which was opposite to
the experiments forced with all external forcings. These mixed results suggest that
the observed positive trends in TCF in the NA over 1980–2018 could be partially
attributable to the diminishing effect of anthropogenic aerosols, which is in line
with the literature [23, 24]. Overall, the climate models used by Murakami et al.
[18] projected decreasing trends in the number of TCs in the NA toward the end of
the twenty-first century because of the dominant effect of increased CO2. Their
study highlighted the mixed effect of anthropogenic forcing on TC activity: CO2

increases may lead to decreases in TCs over the NA, while decreasing anthropo-
genic aerosols may lead to increases. Additional large-ensemble experiments that
are forced with a single external forcing will be useful to clarify the impact of
individual forcings on the global activity of TCs.

There are a few new studies that have reported significant observed trends in TC
activity near the world’s coastlines since the 1980s. For example, Wang and Toumi [26]
reported that the distance between the point of TC maximum intensity and the nearest
land mass has decreased by about 30 km per decade and that the annual frequency of
global TCs has increased with proximity to land by about two additional cyclones per
decade since 1982. Consistent with this, the fraction of annual TCs entering coastal
regions and the annual mean fraction of their lifetime that TCs spend in coastal regions
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have increased with proximity to land. These observed trends suggest a global-scale
landward migration of TC activity, leading to substantial increases in TC risk. Wang and
Toumi [26] also found that the observed increases in the annual mean fraction of their
lifetime that TCs spend in coastal regions were not relevant to the slowdown in the mean
moving velocity of TCs, but were related to the increases in TC genesis and TCF near
the world’s coastal regions associated with changes in the large-scale atmosphere and
ocean conditions. Wang and Toumi [26] also considered a possible influence by
multidecadal natural variability (e.g., the PDO), but they found that the observed
increases were still present even when only PDO-neutral years were considered for
the trend analysis. Another study related to that of Wang and Toumi [26] found that TCs
approaching Tokyo have been increasing in frequency since 1980 [27]. However,
because these studies were based on observational analysis only, no clear evidence
has been shown as to whether these trends have been caused by anthropogenic climate
changes.

Other observational studies have reported a slower decay of landfalling TCs in
land regions adjacent to the NA [28] and WNP [30]. Given that many climate
modeling studies project increases in mean TC intensity in a warmer climate, it
was hypothesized that the mean duration of a TC over land could be longer because
of the increased TC intensity at the time of landfall, meaning it takes longer for
dissipation over land to occur. However, Li and Chakraborty [28] reported through
idealized numerical experiments that, even under the same TC intensity at landfall,
TCs can last longer over land when the local SST is higher. This result rejects the
above hypothesis and indicates that it is not the initial TC intensity at landfall but the
total amount of moisture in the air that determines the duration of a TC over land. Liu
et al. [30] also showed an increasing trend in the annual mean overland duration of a
TC over mainland China during the period 1975–2009. Consistent with the conclu-
sion of Li and Chakraborty [28], they showed that observed decreases in the intensity
weakening rate after landfall were responsible for the longer duration of TCs over
land, which might be linked to the increasing SSTs in the coastal region of mainland
China.

The increasing frequency of extremely severe TCs in some regions and unprec-
edented extreme hurricane season events in recent decades have aroused public
interest regarding the effect of global warming on the occurrence of these events.
Because most previous studies examined projected future changes in mean TC
activity over a specific period, such as a few decades at the end of this century,
these studies were limited to identifying if individual events of storms or seasons
have been driven by anthropogenic climate changes. To address the gap between
public and scientific interests, a new “event attribution” technique has been applied
to individual events of storms and seasons.

One such technique, which involves the so-called pseudo-global warming
experiments, was applied to individual storms to quantify the effect of climate
changes on the increasing TC intensity in terms of maximum wind speed and
precipitation. This technique resembles medium-range weather forecasting, except
that the background thermodynamic variables, such as air temperature and
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humidity, are forced as lateral boundary conditions. The same forecast simulations
are conducted but forced with modified large-scale variables in which the effect of
global warming is removed or superimposed. The counterfactual simulations are
compared with the original simulations to see how much the changing mean state
caused by global warming could alter TC statistics such as TC intensity. Patricola
and Wehner [32] applied pseudo-global warming experiments to 15 major TC
events over the NA and Pacific oceans. They concluded that future anthropogenic
warming would robustly increase the TC maximum wind speed and rainfall of
11 of 13 intense TCs. In contrast, they showed that the climate change between the
present-day and pre-industrial conditions so far might have enhanced the average
and extreme rainfall for several hurricanes but might not have changed the TC
maximum wind speed. Similar pseudo-global warming experiments were
conducted by Reed et al. [33] for Hurricane Florence, and the results showed
that the simulated total accumulated rainfall over land induced by Hurricane
Florence increased significantly when compared with the counterfactual experi-
ments that mimicked the pre-industrial climate. They also reported that Hurricane
Florence would be about 80 km larger in size because of climate change. Although
these studies are useful to estimate the effect of climate change on TC intensity for
individual storms, there is a caveat to this technique; that is, it assumes that the
simulated TC track will not change in a different mean climate state. Indeed,
several studies have already reported that global warming will also alter the tracks
of TCs. Moreover, a pseudo-warming experiment cannot quantify how much a
changing climate will alter the frequency of occurrence of extreme storms, because
these experiments are conducted using the initial conditions in which the target
TCs were already included. Another issue with this event attribution studies is that
they are completely dependent on models for the attribution, and they also typi-
cally do not demonstrate that there has been a detectable change in a relevant
observed time series to support the inferences from the model.

Another event attribution study was applied to seasonal predictions. Murakami
et al. [36] utilized a seasonal prediction model to identify the cause of the active
MH season in the NA in 2017. They first showed that their dynamical seasonal
prediction model could predict the active MH season in 2017 a few months in
advance. Then, they applied idealized seasonal forecast experiments in which the
same seasonal predictions were performed using the dynamical model but forced
with the SST simulated by the seasonal predictions with some modifications to
identify which region of SST anomalies were responsible for the active MH
season. Murakami et al. [36] found that the warm SSTs over the tropical NA
were the primary reason for the active MH season in 2017, while the moderate La
Niña conditions that same year were a minor influence. They also conducted
idealized seasonal predictions for the future conditions in which the projected
future increases in the mean SSTs were superimposed onto the 2018 SST fields to
mimic the 2018 summer conditions but under the anticipated future climate at the
end of this century by prescribing anticipated future level of CO2. They found that
a more active MH season than that in 2018 was projected using the future SSTs,
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indicating a substantial influence of global warming on the occurrence of an active
MH season like that in 2018. A similar event attribution study was applied to the
2019 active TC season over the WNP by Qian et al. [37]. Different from the
approach of Murakami et al. [36], they utilized three different dynamical models to
test the sensitivity of the results to the choice of model. Although they found that
warmer SSTs over the central Pacific were the primary reason for the active TC
season in 2018 and that the results were consistent among the three models, the
future experiments showed diverse results. Their study highlights the importance
of a multi-model approach to quantifying the uncertainty in future projections.

There have also been some recent studies showing different projected future
increases in the global number of TCs to previous studies. By applying a statisti-
cal–dynamical technique, Emanuel [42] reported projected future increases in the
global number of TCs in a warmer climate, and they also reported that this
projected increase was highly correlated with the GPI computed from the large-
scale variables that forced the statistical–dynamical downscaling. Specifically,
they showed that the projected increases in TC number may be related to the
thermodynamic parameters, such as the PI. On the other hand, Lee et al. [44] also
conducted future projections using different statistical–dynamical models in which
the TC genesis rate depended on the GPI. They showed that this downscaling using
the GPI based on relative humidity resulted in a projected increase in the global
number of TCs, whereas using the GPI based on saturation deficit resulted in a
projected decrease. These contradictory results highlight the substantial level of
uncertainty in the projected future changes of TC genesis. Another recent study
used a high-resolution dynamical global model to show a projected increase in the
global number of TCs in a warmer climate [48]. Specifically, they revealed that the
projected future changes in TC genesis depended on two factors: the TC seeding
rate and the probability of a seed developing into a TC. They showed that the
projected future changes in large-scale mean variables primarily modified the
latter. However, even if the large-scale mean variables were unfavorable for TC
development, the number of TCs could be increased in cases with increased TC
seeds. Indeed, the climate model used in Vecchi et al. [48] showed projected future
increases in TC seeds even when the large-scale conditions such as the ventilation
index and mean vertical motion became more unfavorable for TC development.
However, another recent study by Sugi et al. [50] indicated that different dynam-
ical models projected decreased numbers of TC seeds in a warmer climate. Overall,
projected future changes in the global number of TCs remain highly uncertain.
Moreover, there is no established theory as to how the global number of TCs is
determined. More theoretical and experimental studies are needed to clarify the
future changes in TC genesis.

Finally, Fig. 20 summarizes the updated consensus among the science community
regarding the possible projected future changes in TC activity [14]. The consensus
has not changed relative to IPCC [1], as shown in Fig. 15. However, one major
difference from Fig. 15 can be recognized at the global scale, whereby a larger
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uncertainty range in the global number of TCs is apparent. This increased uncer-
tainty is mainly because experts have considered the abovementioned new studies in
which projected increases in the global number of TCs have been shown. Knutson
et al. [14] concluded lower confidence regarding a decrease in the global TC number.
Instead, they showed medium-to-high confidence in an increase in the proportion of
TCs that reach very intense levels.

In conclusion, future projections as well as ongoing climate changes in TC activity
remain a challenging scientific topic despite considerable progress having been made
in response to the sizeable societal impacts involved and therefore the substantial level
of public interest. There are large uncertainties in the future projections of TC
numbers, as well as the regional changes in TC activity. Reducing these uncertainties
in climate model projections is important. Understanding the physical mechanisms
controlling TC genesis is also an important topic. It is expected that accumulating
reliable observations of TCs over the long term will help towards a better understand-
ing of the effect of climate change on TC activity. New studies using climate models,
long-term observations, and theories are needed to shed further light on the uncer-
tainties involved in projecting the future patterns and trends of TCs.
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Fig. 20 Summary of tropical cyclone (TC) projections for a 2 �C global anthropogenic warming
reported in Knutson et al. [14]. Like Fig. 15, shown for each basin and the globe are the median and
percentile ranges for projected percentage changes in TC frequency, category 4–5 TC frequency,
mean TC intensity, and TC rain rates. For storm frequency, the 5th–95th-percentile range across
published estimates is shown. For category 4–5 storm frequency, mean TC intensity, and TC rain
rates, the 10th–90th-percentile range is shown. (Adapted from Knutson et al. [14]. © American
Meteorological Society. Used with permission)

44 Tropical Cyclones in Changing Climate 1135



References

1. IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press,
Cambridge., 1535 pp. https://doi.org/10.1017/CBO9781107415324

2. Velden C et al (2006) The Dvorak tropical cyclone intensity estimation technique: a satellite-
based method that has endured for over 30 years. Bull Am Meteor Soc 87:1195–1210. https://
doi.org/10.1175/BAMS-87-9-1195

3. Kossin JP, Olander TL, Knapp KR (2013) Trend analysis with a new global record of tropical
cyclone intensity. J Clim 26:9960–9976. https://doi.org/10.1175/JCLI-D-13-00262.1

4. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate
oscillation with impacts on salmon production. Bull AmMeteor Soc 78:1069–1079. https://doi.
org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2

5. Folland CK, Parker DE, Colman A, Washington R (1999) Large scale modes of ocean surface
temperature since the late nineteenth century. In: Navarra A (ed) Beyond El Niño: Decadal and
Interdecadal Climate Variability. Springer-Verlag, Berlin, pp 73–102

6. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the
Northern hemisphere. Clim Dyn 16:661–676. https://doi.org/10.1007/s003820000075

7. Li W, Li L, Deng Y (2015) Impact of the interdecadal Pacific oscillation on tropical cyclone
activity in the North Atlantic and Eastern North Pacific. Sci Rep 5:12358. https://doi.org/10.
1038/srep12358

8. Zhao J (2018) Contribution of the interdecadal Pacific oscillation to the recent abrupt decrease
in tropical cyclone genesis frequency over the western North Pacific since 1998. J Clim 31:
8211–8224. https://doi.org/10.1175/JCLI-D-18-0202.1

9. Yan X, Zhang R, Knutson TR (2017) The role of Atlantic overturning circulation in the recent
decline of Atlantic major hurricane frequency. Nat Commun 8:1695. https://doi.org/10.1038/
s41467-017-01377-8

10. Klotzbach PJ, Gray WM (2008) Multidecadal variability in North Atlantic tropical cyclone
activity. J Clim 21:3929–3935. https://doi.org/10.1175/2008JCLI2162.1

11. Pielke RA, Landsea C, Mayfield M, Laver J, Pasch R (2005) Hurricanes and global warming.
Bull Am Meteor Soc 86:1571–1575. https://doi.org/10.1175/BAMS-86-11-1571

12. Bell GD, Chelliah M (2006) Leading tropical modes associated with interannual and multi-
decadal fluctuations in North Atlantic hurricane activity. J Clim 19:590–612. https://doi.org/10.
1175/JCLI3659.1

13. Knutson T et al (2019) Tropical cyclones and climate change assessment: part I. Detection and
attribution. Bull Am Meteor Soc 100:1987–2007. https://doi.org/10.1175/BAMS-D-18-0189.1

14. Knutson T et al (2020) Tropical cyclones and climate change assessment: part II. Projected
response to anthropogenic warming. Bull Am Meteor Soc 101:E303–E322. https://doi.org/10.
1175/BAMS-D-18-0194.1

15. Wang C, Wu K, Wu L, Zhao H, Cao J (2021) What caused the unprecedented absence of
Western North Pacific tropical cyclones in July 2020? Geophys Res Lett 48:e2020GL092282.
https://doi.org/10.1029/2020GL092282

16. Murakami H, Vecchi GA, Delworth TL, Wittenberg AT, Underwood S, Gudgel R, Yang X,
Jia L, Zeng F, Paffendorf K, Zhang W (2017) Dominant role of subtropical Pacific warming in
extreme eastern Pacific hurricane seasons: 2015 and the future. J Clim 30:243–264. https://doi.
org/10.1175/JCLI-D-16-0424.1

17. Murakami H, Vecchi GA, Underwood S (2017) Increasing frequency of extremely severe
cyclonic storms over the Arabian Sea. Nat Clim Chang 7:885–889. https://doi.org/10.1038/
s41558-017-0008-6

18. Murakami H, Delworth TL, Cooke WF, Zhao M, Xiang B, Hsu PC (2020) Detected climatic
change in global distribution of tropical cyclones. Proc Natl Acad Sci U S A 117(20):
10706–10714. https://doi.org/10.1073/pnas.1922500117

1136 H. Murakami

https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1175/BAMS-87-9-1195
https://doi.org/10.1175/BAMS-87-9-1195
https://doi.org/10.1175/JCLI-D-13-00262.1
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
https://doi.org/10.1007/s003820000075
https://doi.org/10.1038/srep12358
https://doi.org/10.1038/srep12358
https://doi.org/10.1175/JCLI-D-18-0202.1
https://doi.org/10.1038/s41467-017-01377-8
https://doi.org/10.1038/s41467-017-01377-8
https://doi.org/10.1175/2008JCLI2162.1
https://doi.org/10.1175/BAMS-86-11-1571
https://doi.org/10.1175/JCLI3659.1
https://doi.org/10.1175/JCLI3659.1
https://doi.org/10.1175/BAMS-D-18-0189.1
https://doi.org/10.1175/BAMS-D-18-0194.1
https://doi.org/10.1175/BAMS-D-18-0194.1
https://doi.org/10.1029/2020GL092282
https://doi.org/10.1175/JCLI-D-16-0424.1
https://doi.org/10.1175/JCLI-D-16-0424.1
https://doi.org/10.1038/s41558-017-0008-6
https://doi.org/10.1038/s41558-017-0008-6
https://doi.org/10.1073/pnas.1922500117


19. Lehner F, Deser C, Maher M, Marotzke J, Fischer E, Brunner L, Knutti R, Hawkins D (2020)
Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth
Syst Dynam. https://doi.org/10.5194/esd-2019-93

20. Pausata FSR, Camargo SJ (2019) Tropical cyclone activity affected by volcanically induced ITCZ
shift. Proc Natl Acad Sci U S A 116(16):7732–7737. https://doi.org/10.1073/pnas.1900777116

21. Evan AT (2012) Atlantic hurricane activity following two major volcanic eruptions. J Geophys
Res 117:D06101. https://doi.org/10.1029/2011JD016716

22. Camargo SJ, Polvani LM (2019) Little evidence of reduced global tropical cyclone activity
following recent volcanic eruptions. Npj Clim Atmos Sci 2:14. https://doi.org/10.1038/s41612-
019-0070-z

23. Dunstone NJ, Smith DM, Booth BBB, Hermanson L, Eade R (2013) Anthropogenic aerosol
forcing of Atlantic tropical storms. Nat Geosci 6:534–539. https://doi.org/10.1038/ngeo1854

24. Sobel AH, Camargo SJ, Hall TM, Lee CY, Tippett MK, Wing AA (2016) Human influence on
tropical cyclone intensity. Science 353:242–246. https://doi.org/10.1126/science.aaf6574

25. Kossin JP, Emanuel KA, Vecchi GA (2014) The poleward migration of the location of tropical
cyclone maximum intensity. Nature 509:349–352. https://doi.org/10.1038/nature13278

26. Wang S, Toumi R (2021) Recent migration of tropical cyclones toward coasts. Science 372:
514–517. https://doi.org/10.1126/science.abb9038

27. Yamaguchi M, Maeda S (2020) Increase in the number of tropical cyclones approaching Tokyo
since 1980. J Meteor Soc Jpn 98:775–786. https://doi.org/10.2151/jmsj.2020-039

28. Li L, Chakraborty P (2020) Slower decay of landfalling hurricanes in a warming world. Nature
587:230–234. https://doi.org/10.1038/s41586-020-2867-7

29. Chen X, Wu L, Zhang J (2011) Increasing duration of tropical cyclones over China. Geophys
Res Lett 38:L02708. https://doi.org/10.1029/2010GL046137

30. Liu L, Wang Y, Zhan R, Xu J, Duan Y (2020) Increasing destructive potential of landfalling
tropical cyclones over China. J Clim 33:3731–3743. https://doi.org/10.1175/JCLI-D-19-0451.1

31. Wehner MF, Zarzycki C, Patricola C (2019) Estimating the human influence on tropical cyclone
intensity as the climate changes. In: Collins J, Walsh K (eds) Hurricane risk, vol 1. Springer, Cham

32. Patricola CM, Wehner MF (2019) Anthropogenic influenced on major tropical cyclone events.
Nature 563:339–346. https://doi.org/10.1038/s41586-018-0673-2

33. Reed KA, Stansfield AM,Wehner MF, Zarzycki CM (2020) Forecasted attribution of the human
influence on hurricane Florence. Sci Adv 6:eaaw9253. https://doi.org/10.1126/sciadv.aaw9253

34. Murakami H, Wang B (2010) Future change of North Atlantic tropical cyclone tracks: projec-
tion by a 20-km-mesh global atmospheric model. J Clim 23:2699–2721. https://doi.org/10.
1175/2010JCLI3338.1

35. Colbert AJ, Soden BJ, Vecchi GA, Kirtman BP (2013) The impact of anthropogenic climate
change on North Atlantic tropical cyclone tracks. J Clim 26:4088–4095. https://doi.org/10.
1175/JCLI-D-12-00342.1

36. Murakami H, Levin E, Delworth TL, Gudgel R, Hsu PC (2018) Dominant effect of relative
tropical Atlantic warming on major hurricane occurrence. Science 362:794–799. https://doi.org/
10.1126/science.aat6711

37. Qian Y, Murakami H, Nakano M, Hsu PC, Delworth TL, Kapnick SB, Ramaswamy V,
Mochizuki T, Morioka Y, Doi T, Kataoka T, Nasuno T, Yoshida K (2019) On the mechanisms
of the active 2018 tropical cyclone season in the North Pacific. Geophys Res Lett 46:
12293–12302. https://doi.org/10.1029/2019GL084566

38. Duan W, Wei C (2013) The spring predictability barrier for ENSO predictions and its possible
mechanism: results from a fully coupled model. Int J Climatol 33(5):1280–1292. https://doi.org/
10.1002/joc.3513

39. Zhang W, Vecchi GA, Murakami H, Villarini G, Jia L (2016) The Pacific meridional mode and
the occurrence of tropical cyclones in the western North Pacific. J Clim 29:381–398. https://doi.
org/10.1175/JCLI-D-15-0282.1

44 Tropical Cyclones in Changing Climate 1137

https://doi.org/10.5194/esd-2019-93
https://doi.org/10.1073/pnas.1900777116
https://doi.org/10.1029/2011JD016716
https://doi.org/10.1038/s41612-019-0070-z
https://doi.org/10.1038/s41612-019-0070-z
https://doi.org/10.1038/ngeo1854
https://doi.org/10.1126/science.aaf6574
https://doi.org/10.1038/nature13278
https://doi.org/10.1126/science.abb9038
https://doi.org/10.2151/jmsj.2020-039
https://doi.org/10.1038/s41586-020-2867-7
https://doi.org/10.1029/2010GL046137
https://doi.org/10.1175/JCLI-D-19-0451.1
https://doi.org/10.1038/s41586-018-0673-2
https://doi.org/10.1126/sciadv.aaw9253
https://doi.org/10.1175/2010JCLI3338.1
https://doi.org/10.1175/2010JCLI3338.1
https://doi.org/10.1175/JCLI-D-12-00342.1
https://doi.org/10.1175/JCLI-D-12-00342.1
https://doi.org/10.1126/science.aat6711
https://doi.org/10.1126/science.aat6711
https://doi.org/10.1029/2019GL084566
https://doi.org/10.1002/joc.3513
https://doi.org/10.1002/joc.3513
https://doi.org/10.1175/JCLI-D-15-0282.1
https://doi.org/10.1175/JCLI-D-15-0282.1


40. Knutson TR et al (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. https://
doi.org/10.1038/ngeo779

41. Emanuel K (2013) Downscaling CMIP5 climate models shows increased tropical cyclone
activity over the 21st century. Proc Natl Acad Sci U S A 110:12219–12224. https://doi.org/
10.1073/pnas.1301293110

42. Emanuel K (2021) Response of global tropical cyclone activity to increasing CO2: results from
downscaling CMIP6 models. J Clim 34:57–70. https://doi.org/10.1175/JCLI-D-20-0367.1

43. Emanuel K (2010) Tropical cyclone activity downscaled from NOAA-CIRES reanalysis,
1908–1958. J Adv Model Earth Sys 2:1–12. https://doi.org/10.3894/JAMES.2010.2.1

44. Lee CY, Camargo SJ, Sobel AH, Tippett MK (2020) Statistical-dynamical downscaling pro-
jections of tropical cyclone activity in a warming climate: two diverging genesis scenarios.
J Clim 33:4815–4834. https://doi.org/10.1175/JCLI-D-19-0452.1

45. Tippett MK, Camargo SJ, Sobel A (2011) A poisson regression index for tropical cyclone
genesis and the role of large-scale vorticity in genesis. J Clim 24:2335–2357. https://doi.org/10.
1175/2010JCLI3811.1

46. Nolan DS, Rappin ED (2008) Increased sensitivity of tropical cyclogenesis to wind shear in
higher SST environments. Geophys Res Lett 35:L14805. https://doi.org/10.1029/
2008GL034147

47. Murakami H, Li T, Peng M (2013) Changes to environmental parameters that control tropical
cyclone genesis under global warming. Geophys Res Lett 40(10):2265–2270. https://doi.org/
10.1002/grl.50393

48. Vecchi GA et al (2019) Tropical cyclone sensitivities to CO2 doubling: roles of atmospheric
resolution, synoptic variability and background climate changes. Clim Dyn
53(9–10):5999–6033. https://doi.org/10.1007/s00382-019-04913-y

49. Tang B, Emanuel K (2012) A ventilation index for tropical cyclones. Bull Am Meteor Soc 93:
1901–1912. https://doi.org/10.1175/BAMS-D-11-00165.1

50. Sugi M, Noda A, Sato N (2002) Influence of the global warming on tropical cyclone climatol-
ogy. J Meteor Soc Jpn 80:249–272. https://doi.org/10.2151/jmsj.80.249

51. Tang B, Camargo SJ (2014) Environmental control of tropical cyclones in CMIP5: a ventilation
perspective. J Adv Model Earth Syst 6:115–128. https://doi.org/10.1002/2013MS000294

52. Tam CY, Li T (2006) The origin and dispersion characteristics of the observed summertime
synoptic-scale waves over the western Pacific. Mon Weather Rev 134:1630–1646. https://doi.
org/10.1175/MWR3147.1

53. Li T, Kwon M, Zhao M, Kug JJ, Luo JJ, Yu W (2010) Global warming shifts Pacific tropical
cyclone location. Geophys Res Lett 37:L21804. https://doi.org/10.1029/2010GL045124

54. Hsieh T-L, Vecchi GA, Yang W, Held IM, Garner ST (2020) Large-scale control on the
frequency of tropical cyclones and seeds: a consistent relationship across a hierarchy of global
atmospheric models. Clim Dyn 55:3177–3196. https://doi.org/10.1007/s00382-020-05446-5

55. Sugi M, Yamada Y, Yoshida K, Mizuta R, Nakano M, Kodama C, Satoh M (2020) Future
changes in the global frequency of tropical cyclone seeds. Sci Online Lett Atmos 16:70–74.
https://doi.org/10.2151/sola.2020-012

1138 H. Murakami

https://doi.org/10.1038/ngeo779
https://doi.org/10.1038/ngeo779
https://doi.org/10.1073/pnas.1301293110
https://doi.org/10.1073/pnas.1301293110
https://doi.org/10.1175/JCLI-D-20-0367.1
https://doi.org/10.3894/JAMES.2010.2.1
https://doi.org/10.1175/JCLI-D-19-0452.1
https://doi.org/10.1175/2010JCLI3811.1
https://doi.org/10.1175/2010JCLI3811.1
https://doi.org/10.1029/2008GL034147
https://doi.org/10.1029/2008GL034147
https://doi.org/10.1002/grl.50393
https://doi.org/10.1002/grl.50393
https://doi.org/10.1007/s00382-019-04913-y
https://doi.org/10.1175/BAMS-D-11-00165.1
https://doi.org/10.2151/jmsj.80.249
https://doi.org/10.1002/2013MS000294
https://doi.org/10.1175/MWR3147.1
https://doi.org/10.1175/MWR3147.1
https://doi.org/10.1029/2010GL045124
https://doi.org/10.1007/s00382-020-05446-5
https://doi.org/10.2151/sola.2020-012

	44 Tropical Cyclones in Changing Climate
	1 Introduction
	2 Detected Climatic Change in the Global Distribution of TCs
	3 Changing TC Tracks Near Coastal Regions
	4 Slower Decay of Landfalling TCs
	5 Pseudo-global Warming and Hindcast Attribution Experiments
	6 Attribution Experiments Based on Seasonal Predictions
	7 Projected Increases in Global TC Numbers in the Future
	8 Conclusion
	References




