
1.  Introduction
The effect of climate change on the frequency and intensity of anomalous hydroclimate events associated with 
heavy precipitation is of great interest and an important topic for society because of its substantial impact on 
hazards, water resources, agriculture, ecosystems, economies, insurance, and mitigation policy. The frequency of 
anomalous precipitation events around the world might have already increased and is anticipated to continue to 
increase in the future due to global warming (Fujibe, 2013; IPCC, 2013; Kharin & Zwiers, 2000; Min et al., 2011). 
One reason for this increase is thermodynamic: the maximum amount of water vapor in the air increases with 
temperature by approximately 6%  K −1 at 298.15  K, as given by the Clausius–Clapeyron relation. However, 
some studies have reported a higher increase of precipitation with temperature than is expected from this rela-
tion, possibly associated with dynamic feedbacks such as circulation changes (Berg & Haerter, 2013; Emori & 
Brown, 2005) Therefore, the relationship between temperature and anomalous precipitation is not simple and 
varies regionally (IPCC, 2013; Shaw et al., 2011; Yu & Li, 2012).

In early July of 2020, a heavy precipitation event occurred in Japan, causing 37 casualties and damage to about 
17,000 houses (Cabinet Office Japan, 2020). In early August of 2021, northern areas of Kyushu Island experi-
enced an unprecedented heavy precipitation event that recorded more than 1,000 mm in total precipitation within 
1 week which was about 50% of the mean annual total precipitation in the region. In addition to the 2020 and 
2021 events, the scientific community is aware of more frequent heavy precipitation events over the last decade 
in Japan (e.g., July 2012, August 2014, June 2017, and July 2018), especially in Western Japan (see Figure 1 for 
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regional names in Japan) at the end of the rainy season (i.e., between late July and early August; JMA, 2019; 
Kawano & Kawamura, 2020; Tsuji et al., 2020). Indeed, several studies have reported increasing trends in the 
observed frequency of heavy precipitation events in Japan (Fujibe, 2013; JMA, 2019; Ohba et al., 2015) and 
projected future increases by the end of this century (Hatsuzuka & Sato, 2019).

However, several issues remain to be addressed. First, there is limited literature attributing the observed trends 
in Japan to anthropogenic forcing or natural variability, although some studies have addressed the changes in 
the frequency of heavy precipitation in future projections (Hatsuzuka & Sato, 2019). Recent studies (Hatsuzuka 
et al., 2020; Kawase et al., 2019) reported the potential effect of anthropogenic warming on heavy precipitation 
on Kyushu Island over the past few decades. However, limitations in their experimental design made it difficult to 
separate the roles of internal variability and anthropogenic forcing in the observed and simulated trends of heavy 
precipitation. Moreover, it is unclear if other areas of Japan have also shown any significant trends in heavy precip-
itation, and if such trends are attributable to increases in anthropogenic forcing. Second, the horizontal resolutions 
of the models used in past studies to make future projections in heavy precipitation events were not fine enough to 
simulate intense tropical cyclones (TCs), which produce some of the heaviest precipitation events. In fact, a typical 
heavy precipitation event in Japan when there is a quasi-stationary front (QSF) is often accompanied by TCs near 
Japan, which enhance the frontal convective activity by transporting warm and moist air toward Japan (Utsumi 
et al., 2017). Thus, using a high-resolution climate model is vital for assessing the effect of climate change on 
anomalous precipitation in Japan. However, conducting large-ensemble climate simulations using high-resolution 
climate models is still a challenge owing to the limitations imposed by the current level of computational resources 
available. Lastly, it is not clear how to objectively identify anomalous precipitation events. Most previous studies 
defined an anomalous precipitation event in terms of intensity (Fujibe, 2013; Hatsuzuka et al., 2020; JMA, 2019; 
Kawase et al., 2019), such as ≥50 mm hr −1. However, an anomalous event should be considered not only by its 
intensity but also by its spatial extent (IPCC, 2013). For example, even with a normal intensity of precipitation, we 
should consider it an anomalous event when the coverage area of the precipitation is unprecedented.

To address the above issues, the present paper utilizes a deep learning technique—an autoencoder—to objectively 
identify anomalous events from daily precipitation data. Deep learning has begun to be applied more commonly 

Figure 1.  Subregion of Japan. There are 47 prefectures in Japan. These prefectures are grouped into three subregions as 
indicated by the colors and names. Also, shown is the domain used for the autoencoder.
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in Earth system science (Reichstein et al., 2019), with recent studies succeeding in applying deep learning archi-
tectures, such as an autoencoder, to objectively extract spatial features to identify and classify anomalous events 
(Liu et al., 2016; Racah et al., 2017). Such an approach could be superior to conventional methods in terms of 
improved accuracy of identification (W. Z. Zhao & Du, 2016) as well as independence from subjective human 
annotation or predefined arbitrary thresholds for anomalous events (Liu et al., 2016; Racah et al., 2017).

The developed autoencoder was applied to both observations and outputs from large-ensemble simulations 
using high-resolution climate models in which intense TCs and precipitation are well reproduced as observed. 
Large-ensemble simulations with and without anthropogenic forcing effect are also employed using the models 
to differentiate the potential influence of natural variability versus anthropogenic forcing on the frequency of 
anomalous events. The main objectives and scope of this study are as follows:

1.	 �To develop a deep learning method to objectively identify anomalous precipitation events in Japan.
2.	 �To identify if there are any significant trends in the frequency of anomalous precipitation events.
3.	 �To elucidate if observed trends in the frequency of anomalous precipitation events in Japan are attributable 

to the increased level of anthropogenic forcing and the trends are beyond the influence of internal variability 
using model climate simulations.

4.	 �To identify the physical causes of the trends in the frequency of anomalous precipitation events in Japan (e.g., 
changes in TC and meteorological front activities).

5.	 �To project potential future changes in the frequency of anomalous precipitation events in Japan.

The remainder of this paper is organized as follows. Section 2 describes the methods including observed data, 
models, experimental design, deep learning autoencoder, and an automated method for tracking meteorological 
fronts. Section 3 shows the results. Section 4 provides brief conclusions and discussions.

2.  Methods
2.1.  Observed and Reanalysis Data

Daily mean high-resolution (0.05°  ×  0.05°) observed precipitation data over Japan were obtained from the 
Asian Precipitation––Highly Resolved Observational Data Integration Towards Evaluation of Water Resources 
(APHRODITE) project (version APHRO_JP_V1207 and V1207_R3; Kamiguchi et al., 2010) over the period 
1950–2015. However, we utilized APHRODITE over the period 1977–2015 because the data before 1977 may 
include uncertainties (Kamiguchi et al., 2010). This gridded data were compiled from rain gauge observations.

The daily mean potential equivalent temperature from the Japanese 55-year Reanalysis (JRA-55; Kobayashi 
et al., 2015) over the period 1977–2015 was also used for an automated method for tracking meteorological fronts 
(to be described in Section 2.6 in more detail). The International Best Track Archive for Climate Stewardship 
(IBTrACS; Knapp et al., 2010), version 4, was used over the period 1977–2015 for the TC data.

2.2.  Model and Large-Ensemble Experiments

The Geophysical Fluid Dynamics Laboratory (GFDL) Hi-resolution version of the Forecast-oriented Low Ocean 
Resolution model (HiFLOR, Murakami et al., 2015) and Seamless System for Prediction and Earth System Research 
(SPEAR, Delworth et al., 2020) were used for the large-ensemble climate simulations. HiFLOR incorporates a 
25-km mesh atmosphere and land components, and 100-km mesh sea-ice and ocean components. SPEAR is the 
current operational seasonal and decadal prediction model developed at GFDL, consisting of the new AM4-LM4 
atmosphere and land-surface model (M. Zhao et al., 2018a, 2018b), the MOM6 ocean model (https://github.com/
NOAA-GFDL/MOM6), and the SIS2 sea-ice model (Adcroft et al., 2019). The horizontal resolution of the ocean 
component is identical to that of HiFLOR, whereas that of the atmosphere is a 50-km mesh.

We conducted two types of multidecadal simulations, AllForc (all forcing) and NatForc (natural forcing), using 
HiFLOR and SPEAR. A summary of the experiments is listed in Table  1. For the AllForc experiments, the 
historical time-varying anthropogenic forcing (e.g., greenhouse gases, ozone, and anthropogenic aerosols) and 
natural forcing (e.g., volcanic aerosols and solar constant) were prescribed for the period 1941–2004 for HiFLOR 
and 1921–2014 for SPEAR, and the anticipated future anthropogenic forcing was prescribed for the period  

https://github.com/NOAA-GFDL/MOM6
https://github.com/NOAA-GFDL/MOM6
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2005–2050 based on the Representative Concentration Pathway (RCP)4.5 scenario HiFLOR and 2015–2100 
based on the Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5; Kriegler et  al.,  2017; Riahi et  al.,  2017) for 
SPEAR. In the simulations, no volcanic event is assumed for HiFLOR and SPEAR after 2006 and 2015, respec-
tively. The number of ensemble simulations was 15 for HiFLOR and 30 for SPEAR. Note that the simulations 
were initiated from the restart files derived from the 1,000-year preindustrial control experiments every 20 years 
from the year 101 for each ensemble member (e.g., year 101 for ensemble 1, year 121 for ensemble 2). Because 
ensemble members initiated with different states of initial conditions, they generate their own internal variability 
(i.e., butterfly effect) so that the simulated internal variability, such as Interdecadal Pacific Oscillation (Folland 
et al., 2002), was out of phase at a specific time among the ensemble members. Taking the mean of the ensemble 
members can filter out the internal variability; thus, the resultant mean field can be regarded as an estimated 
modeled response to the external forcing (Murakami et al., 2020).

The other simulation type comprised the NatForc experiments. The experimental settings for NatForc were iden-
tical to AllForc apart from the anthropogenic forcing such as greenhouse gases and anthropogenic aerosols were 
fixed at their levels in 1921 for SPEAR and 1941 for HiFLOR, but keeping the same time-varying natural forcing. 
The main difference between AllForc and NatForc was time-varying greenhouse gases, anthropogenic aerosols, 
and ozone. Note that the future scenarios are different between HiFLOR and SPEAR because we conducted the 
HiFLOR simulations when the SSP5-8.5 scenario was unavailable. Because the projected future level of anthro-
pogenic forcing was different between AllForc SPEAR (SSP5-8.5) and AllForc HiFLOR (RCP4.5), we did not 
expect comparable magnitudes of trends in the future between the models. However, owing to the monotonic 
increases in anthropogenic forcing in both the scenarios, we did expect monotonic increases in the frequency 
of anomalous events in both future scenarios that could be largely different from NatForc where the fixed level 
of anthropogenic forcing is prescribed in the future. Although the AllForc and NatForc experiments in SPEAR 
were  a complement to HiFLOR, SPEAR may still leave uncertainties in the trends of anomalous precipitation 
events because SPEAR cannot resolve intense TCs owing to its intermediate horizontal resolution (50-km mesh).

2.3.  Precipitation Anomalies for the Input of Autoencoder

Our focus is on large-scale precipitation events with a relatively long duration than the short-term synoptic-scale 
weather events so we analyzed 5-day running-mean anomalies of daily mean precipitation during the summer 
season (1 May to 31 October) for both observations and model outputs. A 5-day running-mean filter is commonly 
used to remove the effect of short-term synoptic weather in many previous studies (e.g., Kikuchi et al., 2012; 
Neena et al., 2014; Tuan, 2019). The anomalies of daily mean precipitation were obtained by subtracting the 
moving 20-year climatological daily mean (derived from the preceding 20-year data) from the raw data. Then, 
5-day running-mean anomalies were computed by averaging the anomalies using the previous 5 days to remove 
the short-term weather events (e.g., squall lines). Therefore, the target of our research is large-scale anomalous 
precipitation that lasts for a few days rather than short-term daily extreme precipitation events. We also prelimi-
narily tested an alternative anomaly definition—that is, a deviation from the fixed 20-year average between 1981 
and 2000—and the results led to qualitatively similar conclusions relative to the results with the 20-year moving 
averages (Figure S1 in Supporting Information S1).

Type Model Period External forcing Ensemble member Volcanic forcing

AllForc HiFLOR 1941–2004 Time-varying historical natural and anthropogenic forcing 15 Yes

2005–2050 Anthropogenic forcing under the RCP4.5 scenario No

SPEAR 1921–2014 Time-varying historical natural and anthropogenic forcing 30 Yes

2015–2100 Anthropogenic forcing under the SSP5-8.5 scenario No

NatForc HiFLOR 1941–2020 Radiative forcing fixed at the 1941 level 15 Yes

SPEAR 1921–2100 Radiative forcing fixed at the 1921 level 30

Note. Two models (HiFLOR and SPEAR) were used for the large-ensemble simulations. The table summarizes the simulation types, models employed, periods of 
simulations, the external forcing, number of ensemble members, and whether or not there was volcanic forcing.

Table 1 
Simulation Configuration
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For the inputs of the autoencoder, as will be described in Section 2.4, the original 5-day running-mean precip-
itation anomaly data of APHRODITE and HiFLOR were further interpolated into the 0.25° × 0.25° grid boxes 
over the domain near Japan (24°–46°N, 123°–146°E; 88 × 92 grids; Figure 1) that is exactly the whole domain 
of APHRO_JP_V1207. The interpolated anomaly data were then normalized by a min–max normalization 

𝐴𝐴
𝑥𝑥−min(𝑥𝑥)

max(𝑥𝑥)−min(𝑥𝑥)
 , where min(x) is the minimum precipitation anomaly (i.e., −40 mm day −1) and max(x) is the maximum 

precipitation anomaly (i.e., 140 mm day −1) to obtain normalized values ranging nearly within 0–1.0. Because a 
specific number of grid sizes that is divisible by 12 is computationally efficient, zero values were further padded 
to the edges of each longitude and latitude axis after the normalization; namely, four grids on both sides of longi-
tudinal edges and two grids on both sides of latitudinal edges were padded with zero values, resulting in 96 × 96 
gridded data.

Because the horizontal resolution of SPEAR is a 50-km mesh, it is inadequate to interpolate the precipitation 
anomaly data by SPEAR into the 0.25° × 0.25° grid boxes so we slightly modified the autoencoder from HiFLOR 
(Tables S3 and S4 in Supporting Information  S1). First, we interpolated the precipitation anomaly data into 
0.5° × 0.5° grid boxes over the domain near Japan (24°–46°N, 123°–146°E; 44 × 38 grids). The interpolated 
anomaly data were then normalized in the same way as HiFLOR. Zero values were further padded to the edges 
of each longitude and latitude axis after the normalization; namely, two grids on both sides of longitudinal edges 
and one grid on both sides of latitudinal edges were padded with zero values, resulting in 48 × 40 gridded data.

2.4.  Developing an Autoencoder to Identify Anomalous Events

A flow chart describing the main processes of the autoencoder is provided in Figure 2a, and the general concept 
of the autoencoder for the detection of anomalous events is explained as follows.

An autoencoder is an unsupervised neural network (or deep learning) method that is commonly used for the 
detection of anomalies in various scientific fields (Alla & Adari, 2019; Chalapathy & Chawla, 2019). In the 
autoencoder procedure, the daily precipitation anomaly fields (i.e., size = 88 × 92 = 8,096, 25-km mesh), as 
described in Section 2.3, are converted to a low-dimensional latent representation (size = 64; i.e., encoding) 
that is a reduction to nearly 0.8% of the original data set (Figure 2a). The compressed low-dimensional data are 
therefore reconstructed to high-dimensional vectors with the same size as the original inputs (decoding). To build 
an autoencoder, a deep learning input precipitation data set attempts to reconstruct it, minimizes the mean square 
errors (MSEs), and determines millions of the parameters that configure the autoencoder. If an autoencoder is 
well trained by using large samples, it can reproduce the original input very well when a sample is frequently 
represented in the training data set (Figure 2b), resulting in a smaller MSE (Figure 2b) between before and after 
autoencoding. However, if a sample is very rare in the training data set, the autoencoder causes a substantial error 
when reconstructing the data, resulting in a large MSE (Figure 2c). Therefore, anomalous events can be detected 
by selecting the events with large MSEs.

A detailed and practical configure of the encoder for observations and HiFLOR is provided in Table S1 in 
Supporting Information S1. The encoder comprised 12 layers, including 3 2-D convolutional layers and 1 dense 
layer. The encoder inputs the normalized 96 × 96 precipitation anomaly data (see Section 2.1 for normalization), 
resulting in compression of the input data into 64 latent cells. For the decoder (Table S2 in Supporting Infor-
mation S1), there were 14 layers, including 4 reversed 2-D convolution layers and 1 dense layer, resulting in the 
decompression of the latent data into 96 × 96 gridded data. In total, there were 2,712,385 parameters determined 
by deep learning for the autoencoder. Using TensorFlow, a mini-batch size of eight was set (i.e., batch size param-
eter), and 40 iterations were set for training (i.e., epoch parameter). We preliminarily assessed that our autoen-
coder does not show any overfitting. The patched edge data were then removed from the output data, resulting in 
the same dimensions as the original input data (88 × 92).

For SPEAR, there were nine layers in the encoder (Table S3 in Supporting Information S1), including two 2-D 
convolutional layers and one dense layer, resulting in the compression of the input data into 32 latent cells. For the 
decoder (Table S4 in Supporting Information S1), there were 11 layers, including 3 reversed 2-D convolutional 
layers and 1 dense layer, resulting in the decompression of the latent data into 48 × 40 gridded data. In total, there 
were 574,497 parameters determined through deep learning for the autoencoder for SPEAR.
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We trained autoencoders separately for observations, the AllForc ensemble of HiFLOR, and that of SPEAR, 
using the normalized precipitation anomalies between 1977 and 2015. The total number of sampling data for 
precipitation anomalies over the period 1977–2015 is 7,176 for observations, 107,640 (7,175 × 15 members) for 
HiFLOR, and 215,280 (7,175 × 30 members) for SPEAR. In the training process, two thirds of the precipitation 
anomalies were randomly selected and used for training, with the remaining data employed for the validation data 
set to construct an autoencoder. By using the constructed autoencoder, MSEs were then computed for all precipi-
tation anomalies including training and validation over the period 1977–2015. We determined the 95th percentile 

Figure 2.  Flow chart and examples of using the autoencoder to identify abnormal precipitation events. (a) Flow diagram of the autoencoder. An autoencoder comprises 
an encoder (E) and a decoder (D). The encoder compresses the original input of precipitation with 88 × 92 grid cells (X) into a latent representation with 64 cells (S), 
whereas the decoder decompresses S into the original 88 × 92 grid cells (Y). An autoencoder is a series of compression and decompression [i.e., Y = D(E(X))]. The 
mean square error (MSE) is computed by comparing Y with X. Anomalous events are defined by their MSEs being greater than or equal to the 95th percentile. (b, c) 
Examples of autoencoder manipulation. In the case of (b), the autoencoder reconstructed (right) the original input (left) very well, with a small MSE of 0.51 mm 2 day −2, 
indicating that this kind of precipitation event is frequently represented in the training data set and the autoencoder can reproduce it. On the other hand, in the case of 
(c), artificial cross-shaped precipitation anomalies are embedded over Hokkaido Island (left). The resultant reconstruction (right) by the autoencoder shows a large MSE 
(24.84 mm 2 day −2) by misleading the reconstruction around the embedded region. This means that the embedded anomalies are very rare in the training data set, and 
the autoencoder did not reconstruct it well. Thus, the cases with large MSEs can be considered as anomalous events.
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of MSEs calculated using the built-in function in Python numpy.quantile and considered the 95th percentile as the 
criterion for anomalous events (Figure 2a). If MSEs exceeded the 95th percentile, these events were considered 
as anomalous events. For the future period (i.e., 2016–2050, Table 1), MSEs are also computed by applying the 
same autoencoder. The same criterion of 95th percentile based on 1977–2015 is also applied for detecting anom-
alous events for the future period. Hereafter, we refer to anomalous events or anomalous precipitation events for 
the days when MSEs exceed the 95th percentile.

Note that an anomalous event might not always be linked to a heavy precipitation event; it could also be a drought 
event if an MSE is large during a dry period. Anomalous events are selected in terms of the rarity of events 
learned via the deep learning method. Therefore, an event with locally intense precipitation is not always selected 
as an anomalous event if similar events frequently occur. The autoencoder also considers the spatial distribution 
of precipitation. Even without intense precipitation, an event with a wide coverage area of precipitation is another 
consideration for selecting anomalous events (Figure S2 in Supporting Information  S1). Also, note that our 
preliminary assessment revealed that applying either 90th or 99th percentile to the threshold led to the qualita-
tively same conclusion as in the case for the 95th percentile (Figure S3 in Supporting Information S1).

2.5.  Tropical Cyclones Detection Method

Model-simulated TCs were obtained directly from 6-hourly outputs using the scheme documented in Murakami 
et al. (2015) and Harris et al. (2016). In short, the flood fill algorithm is applied to find closed contours of sea 
level pressure anomaly along with closed contours of 300–500-hPa temperature anomalies to identify the warm 
core. The storm detection must maintain above certain conditions as well as a specified wind speed criterion 
(17.5 m s −1 for HiFLOR and 15.75 m s −1 for SPEAR) for at least 36 consecutive hours. Following Murakami 
et al. (2020), TC positions were counted every 6 hr over each 5° × 5° grid box within the domain of Figure 1. 
The total count for each grid box was defined as the TC density. The TC density fields were smoothed using a 
nine-point moving average weighted by distance from the center of the grid box. Previous studies revealed the 
reasonable simulations by HiFLOR in terms of global TC distributions and intense TCs such as Category 4 and 
5 hurricanes (Murakami et al., 2015); western North Pacific typhoons (Zhang et al., 2016); intensification rate of 
TCs (Bhatia et al., 2019); and spatial and temporal variation of hydroclimate (van der Wiel et al., 2016).

2.6.  Automated Method for Tracking Meteorological Fronts

An automated method for tracking meteorological fronts is applied following a methodology documented in 
Schemm et  al.  (2015). This tracking method relies on the meridional gradient of daily equivalent potential 
temperature at the 850 hPa level interpolated on the 2.5° × 2.5° grid boxes. A thermal frontal parameter (TFP) is 
first defined as follows:

TFP = −∇|∇𝜃𝜃e| ⋅
∇𝜃𝜃e

|∇𝜃𝜃e|
,� (1)

where θe stands for equivalent potential temperature at the 850 hPa level. We impose |𝐴𝐴 ∇ θe| > 4K (100 km) −1 to 
exclude a priori regions of weak thermal gradients from the data. A front is located where TFP values are equal 
to zero. We fit a cubic spline through the connected grid points where TFP values are equal to zero to estimate 
the length of a front. We require all fronts to have a minimum length of 500 km. To separate QSFs from mobile 
fronts, the following parameter is considered:

𝑣𝑣f = 𝑣𝑣 ⋅
∇TFP

|∇TFP|
,� (2)

where v is the horizontal wind at the 850 hPa level. This parameter allows us to distinguish cold (vf > +3 m s −1) 
from warm (vf < −3 m s −1) fronts. When |vf| ≤ 3 m s −1, they are classified as QSFs. Figure S4 in Supporting 
Information S1 shows examples of fronts detected from the JRA-55 reanalysis data set compared with the actual 
weather maps, revealing that this automated method adequately tracks the recorded QSFs and mobile fronts. In 
addition, the 325-K isoline of equivalent potential temperature generally represents locations of QSFs as well as 
mobile fronts in the summer season near Japan. Figure S4 in Supporting Information S1 reveals that the auto-
mated method works well to detect meteorological fronts.



Earth’s Future

MURAKAMI ET AL.

10.1029/2021EF002481

8 of 18

3.  Results
3.1.  Observed and Simulated Trends in Anomalous Events in Japan

The blue shaded areas in Figure  3a represent composites of the observed precipitation anomalies based on 
the anomalous events detected by the autoencoder derived from observed data. We preliminarily analyzed the 
detected anomalous events if they are accompanied by the occurrence of TCs, QSFs, mobile fronts, or their 
combinations using the observed TC record and the automated tracking method for meteorological fronts using 
the JRA55 reanalysis data set (Schemm et al., 2015).

It turned out that about 54% of the observed anomalous events occurred when TCs and QSFs simultaneously 
exist over the domain shown in Figure 1 and the other 45% of the events occurred when QSFs exist without TC 
occurrence (Figure 3b). Owing to the close linkage of TCs and QSFs with heavy rainfall, the locations of TCs 

Figure 3.  Composited spatial pattern of deep learning–detected anomalous precipitation events and breakdown of the events. (a) Composites of observed pentad-mean 
anomalies of precipitation (shading, mm day −1), locations of quasi-stationary fronts (QSFs; black lines), and locations of tropical cyclones (TCs; colored numbers) for 
the anomalous precipitation events during the summer season (May–October) over the period 1977–2015 detected by the autoencoder. Color numbers represent the 
Saffir-Simpson TC intensity categories (0, tropical storms; 1–5, Categories 1–5, NOAA, 2021). The total frequency of anomalous events (359 days), the percentage of 
TC days relative to total days (53.5%), mean storm intensity (37.3 m s −1), and mean lifetime maximum TC intensity (44.8 m s −1) are listed in the top-left corner. (b) 
Breakdown of observed anomalous events detected by autoencoders over the period 1977–2015 using the observed TC record and automated meteorological fronts 
detection applying to the JRA55 reanalysis data set. Anomalous events were classified into four groups if the events are accompanied by the occurrence of TCs (TC), 
QSFs, their combinations (TC + QSF), and others (Others). Due to the small number, “Others” includes anomalous days associated with mobile fronts, non-TCs, and 
nonfrontal events. (c, d) As in (b), but for HiFLOR and SPEAR, respectively.
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and quasi-stational fronts were superimposed if any TCs or QSFs were present near Japan (within the domain in 
Figure 3a) during the 5 days before the detected anomalous day. The total number of anomalous events for every 
year is defined as the frequency of anomalous events. The time series of the observed frequency in anomalous 
events is plotted in black in Figure 4a, showing a statistically significant positive trend over the period 1977–2015 
at the 95% level using the Mann–Kendall test. The gray line represents the time series of the mean annual days of 
events per grid point with accumulated precipitation ≥100 mm in 5 days. The correlation coefficient between the 
black and gray lines over the period 1977–2015 is +0.56. Such moderate correlation indicates that the detected 
anomalous events are to a certain extent associated with extremely intense precipitation, but not always with 
intense precipitation events.

The red line in Figure 4a represents the ensemble mean frequency of the anomalous events identified by the auto-
encoder applied to the 15-member AllForc experiments using the GFDL-HiFLOR climate model. The simulated 
time series also shows a statistically significant positive trend, like the trend derived from observations. Note 
that averaging the ensemble members can filter out the effect of internal variability; thus, the ensemble mean is 
considered as the response to anthropogenic forcing (Murakami et al., 2020). Figure 4b reveals the observed and 
simulated linear trends in the frequency of anomalous events according to HiFLOR and SPEAR. The AllForc 
experiments by the two models show statistically significant trends in both the historical period (1977–2015) and 
the future period included (1977–2050). Although different levels of radiative forcing were used for AllForc in 
the future projections between the models, the significant positive trends in the frequency of anomalous events 
produced by AllForc are clearly different from those produced by NatForc, in which no significant trend is evident 
(Figure 5). These results suggest that the observed positive trend in the frequency of anomalous events over the 
period 1977–2015 cannot be explained only by the model generated internal variability, but the increases  in anthro-
pogenic forcing played an important role in the observed trend (i.e., attributable). Moreover, anomalous events 
will likely become more frequent toward the end of this century by anticipated increases in anthropogenic forcing.

To elucidate which regions of Japan show significant changes in anomalous events, the anomalous events are 
grouped into three different groups based on the location of maximum precipitation (Figure 6). When maximum 
precipitation is found in one of the three subregions defined in Figure 1, the event is assigned to the subregion. 
The frequencies of events in both observations and HiFLOR do not show significant trends for both Eastern and 
Central Japan (Figures 6a and 6b). In contrast, both observations and HiFLOR show a statistically significant 
positive trend in Western Japan (Figure 6c). Overall, the consistency between the observations and AllForc simu-
lations by HiFLOR in terms of statistically significant trends in the same subregion highlights a good reproduc-
ibility of the observed trends in HiFLOR, and thereby increases in anthropogenic forcing might have played an 
important role in the observed trends in Western Japan. As for future projections, the AllForc experiments project 
an increasing frequency of extreme events regardless of the subregions (Figure 7), whereas the NatForc experi-

Figure 4.  Time series and linear trends of deep learning–detected anomalous precipitation events. (a) Time series of annual frequency (days on the left y-axis) of 
anomalous precipitation events in the observations (black) and ensemble mean of the AllForc experiments in HiFLOR (red), along with the gray line representing the 
mean annual days of events (right y-axis) with precipitation ≥100 mm 5 days −1 per grid point. The Mann–Kendall significance test was applied, and the p-values for 
each trend are shown in the legends. Dashed lines were drawn when the linear trends were statistically significant at the 95% level. Red shading marks the range of 
minimum and maximum values of the ensemble members. (b) Linear trends in anomalous days for observations and models from 1977 to 2015 and 1977 to 2050. Red 
boxes or dots denote statistically significant positive trends for the ensemble means or observations at the 95% level by Mann–Kendall test. The whiskers represent the 
range of the 10% and 90% quantiles of ensemble members; the vertical lines show the median value; diamonds show outliers; dots show each ensemble member; and 
squares represent the ensemble mean or observed value. Units: days year −1.
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ments show a steady frequency of anomalous events. These results highlight the dominant effect of anthropogenic 
forcing on increases in anomalous events everywhere in Japan in the future. A caveat is that the models do not 
always agree with observations quantitatively, specifically for the magnitude of trends and the fraction of TC days 
for each subregion (Figure 6c and Figure S5 in Supporting Information S1) probably due to the systematic biases 
in the mean state and/or TC frequency of occurrence as reported in the previous study (Murakami et al., 2015).

3.2.  Effect of Tropical Cyclones and Quasi-Stationary Fronts on Trends in Anomalous Events

As mentioned earlier, most of the detected anomalous events are associated with TCs, QSFs, and their combi-
nations. The simulated anomalous events by HiFLOR and SPEAR also showed a similar composition ratio as 
observed (Figures 3b–3d). We analyze the anomalous events when any TCs and QSFs exist at the same time 
over the analyzed domain in the 5 days before the extreme events (TC + QSF) as well as the events when only 
QSFs exist because the two types constitute the majority of the anomalous events. The observed frequency of 
TC  +  QSF events shows a statistically significant positive trend (Figures  8a and  8b). The historical simula-
tions and future projections by AllForc HiFLOR and SPEAR also show statistically significant positive trends, 
despite slightly smaller slopes than observed, whereas there are no significant trends projected by the NatForc 
experiments. As for QSF events, both the observations and HiFLOR experiments do not show significant trends 
over the last few decades, although AllForc SPEAR shows statistically significant positive trends (Figure 8d). On 
the other hand, future projections show statistically significant positive trends in the AllForc experiments by both 
HiFLOR and SPEAR, whereas a significant positive trend is not observed by the NatForc experiment in SPEAR 
(Figure 8d). These results lead us to conclude that the frequency of anomalous TC + QSF events has increased 
over the last few decades and will continue increasing in the future due to increases in anthropogenic forcing.

We address why Western Japan specifically has experienced an increasing frequency of anomalous events over 
the last few decades. One of the reasons is the increasing frequency of TC occurrence (i.e., TC density) near 
Japan. Figures 9a and 9b show the spatial pattern of linear trends for TC frequency of occurrence for all storms 
(i.e., maximum wind speed greater than 17.5 m s −1) between 1977 and 2015. The observed trend shows a wave-
like spatial pattern with a positive trend in southwest Japan, although the positive trend does not pass the signif-
icance test. The simulated trend derived from the ensemble mean of the AllForc HiFLOR experiments over the 
same period moderately reproduces the increasing trends in southwest Japan (Figure 9b), albeit the magnitude 

Figure 5.  Histogram showing linear trends in annual anomalous days over the period 1977–2015 by the ensemble members 
of HiFLOR experiments and observations. The red (blue) line shows a fitted normal distribution applied to the 15 ensemble 
members for AllForc (NatForc) experiments. The black line denotes the observed trend over the same period. This figure 
shows that the observed trend is located below the 95th percentile of AllForc, but above the 95th percentile of NatForc, 
highlighting that the observed trend can be statistically distinguishable from internally generated noise and can be attributable 
to the increases in anthropogenic forcing.
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of the simulated trends and spatial pattern are somewhat inconsistent with observations (note that the color 
scale is different in Figures 9a and 9b). In terms of the changes in the frequency of heavy precipitation events, 
a change in intense TCs should be an important factor. HiFLOR is a valuable high-resolution global coupled 
climate model capable of simulating intense storms, such as major hurricanes (Murakami et al., 2015, 2016; 
Zhang et al., 2016), and is therefore used to quantify changes in intense storms. Figures 9c and 9d are the same as 
Figures 9a and 9b, except for intense storms with maximum wind speed greater than 49 m s −1 that are equivalent 
to major hurricanes according to Saffir-Simpson’s intensity scale (NOAA, 2021). AllForc HiFLOR reproduces 
the spatial distribution of the observed trends, showing overall increases in intense storms over the whole of the 
ocean basin, although NatForc HiFLOR does not show any significant trend (figure not shown). Therefore, these 
consistent spatial patterns between observations and AllForc HiFLOR suggest that increases in anthropogenic 

Figure 6.  Three patterns for anomalous precipitation events. The observed anomalous events are assigned to one of the three 
subregions based on the location of maximum precipitation. The left and right panels are the same as Figures 3a and 4a, 
respectively, but for the results of each subregion. Numbers in each subtitle denote the total frequency of anomalous events 
(Total, days), the percentage of TC days relative to total days (TCR, %), mean maximum intensity of TCs (MI, m s −1), and 
mean lifetime maximum intensity of TCs (MLMI, m s −1) for these TC days during the anomalous precipitation events. The 
same assignment was applied to the anomalous events derived from the historical simulations by HiFLOR, resulting in 
similar trends to observations (red lines, Figure S5 in Supporting Information S1).
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forcing played an important role in the observed increase in TC frequency, specifically intense TCs in the western 
quadrant of the Pacific, and in turn, this may lead to significant increases in anomalous events in Western Japan. 
Moreover, Figures 9e and 9f show the linear trends between 1977 and 2050 projected by AllForc HiFLOR. Both 
figures show a similar spatial pattern of the trends between 1977 and 2015, highlighting continuing increases in 
the frequency of occurrence of TCs and intense TCs over southwest Japan in the future. This would lead to more 
frequent anomalous events in this region in the future.

Another reason for the increasing trend in anomalous events in Western Japan could be related to changes in 
precipitation associated with QSFs. The rainy or the rainband associated with QSFs over Japan from June to July 

Figure 7.  Time series of the frequency of extreme events for each subregion for the period including the future (1977–2050). 
As in Figure 4a, but for the AllForc future projections by HiFLOR (red) and SPEAR (orange), and NatForc projections by 
SPEAR (blue) for individual subregions (a–c).
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is called the Baiu. Figure 10 shows the observed and simulated seasonal evolution of precipitation for the longi-
tudinal sector including Western Japan. Observations show a climatological northward migration of the Baiu 
rainband from June and July (shading in Figure 10a). There are significant positive trends in observed precip-
itation from June to early July around 28°–36°N that including Western Japan (black contours in Figure 10a). 
Although the same figure by AllForc HiFLOR somewhat shows inconsistencies in terms of the statistical signif-
icance relative to observations, AllForc HiFLOR qualitatively agrees with the observed trends, showing increas-
ing precipitation in the same latitudes associated with a more active Baiu rainband (Figure 10b). The significant 
trends simulated by AllForc HiFLOR are clearer for the future projection (Figure 10c). Previous studies on future 
projections are also consistent with this finding, showing projected increases in the mean precipitation around 
Western Japan from June to the middle of August that represents a delay in the termination of the Baiu season 
(Kusunoki et al., 2011).

4.  Conclusions and Discussions
We have developed a new deep learning method—autoencoder—to objectively detect anomalous precipita-
tion events from observations and model outputs. The detected anomalous events are mostly associated with 
extremely intense precipitation events that are concurrent with the existence of TCs and QSFs near Japan. There 
is a significant positive trend in the frequency of anomalous events in observations over the period 1977–2015, 
and the trend is significant specifically in Western Japan. We found that our chosen climate models, HiFLOR 
and SPEAR, faithfully reproduced the observed increasing trends in anomalous precipitation events in Japan, 

Figure 8.  Trends in observed and simulated frequency of TC + QSF and QSF anomalous precipitation events. Anomalous events were grouped into events with TCs 
and quasi-stationary fronts (TC + QSF) or these with quasi-stationary front (QSF) depending on whether TCs and QSF simultaneously appeared or only QSF appeared 
over the domain of Figure 1 in the 5 days before the anomalous event. (a, b) As in Figures 4a and 4b, but for the TC + QSF events. (c, d) As in (a) and (b), but for the 
QSF events.



Earth’s Future

MURAKAMI ET AL.

10.1029/2021EF002481

14 of 18

Figure 9.  Linear trends in observed and simulated TC density. TC density is defined as the total count of 6-hourly TC tracks in each 5° × 5° grid box. (a) Observed 
linear trends in TC density (≥17.5 m s −1) over the period 1977–2015. (b) As in (a), but for trends simulated by AllForc experiments by HiFLOR. (c, d) As in (a) and (b), 
but for intense TCs (≥49 m s −1). (e, f) As in (b) and (d), but for the trends from 1977 to 2050. Red (blue) dots indicate the positive (negative) trends that are statistically 
significant at the 95% level according to the Mann–Kendall test. Note that the color scale is different between observations and HiFLOR.
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specifically Western Japan. In contrast, the idealized experiments by HiFLOR and SPEAR in which anthropo-
genic forcing was not increased over the period 1977–2015 did not show any significant trends in the frequency 
of anomalous events, suggesting a substantial influence of anthropogenic forcing on the increase in anoma-
lous precipitation events beyond the influence of internal variability. These increases have been caused by the 
increased frequency of occurrence of intense TCs along with the enhanced activity of QSFs near Japan. The 
climate models also projected continuing increases in the frequency of occurrence of intense TCs near Japan and 
enhancement in QSF activities in the future due to the anticipated anthropogenic climate changes. They will in 
turn lead to increases in anomalous precipitation events in Japan in the future.

Figure 10.  Time–latitude cross section of the precipitation averaged for 125°–142°E. The period is from pentad 32 (5–11 June) to 44 (4–9 August). (a) Observations by 
CPC Merged Analysis of Precipitation (CMAP, 2.5°, 1979–2015). Shadings show climatological mean values (mm day −1), whereas black contours show linear trends 
over the period 1977–2015 (mm day −1 per year). Red contours show statistically significant trends at the 95% level according to the Mann–Kendall test. (b) As in (a), 
but for the ensemble mean of AllForc HiFLOR experiments over the same period. (c) As in (b), but for the future period of 1977–2050. CMAP is available online at 
https://psl.noaa.gov/data/gridded/data.cmap.html.
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We found that deep learning is a useful technique to objectively screen anomalous events from observed and 
climate modeling data sets. However, a caveat worth noting is that anomaly detection using an autoencoder is a 
work in progress, and far from a fully solved area of machine learning (Chalapathy & Chawla, 2019). Many other 
methods can be used for anomaly detection, depending on the nature of the data (Chalapathy & Chawla, 2019). 
For instance, convolution networks, such as the autoencoder developed in this study, are preferred for image data 
sets, while “long short-term memory” (LSTM)–based models tend to produce good results for sequential data. 
Although our preliminary results suggest that consistent results can be obtained using a spatiotemporal LSTM 
(Chong & Tay, 2017; Figures S6 and S7 in Supporting Information S1), it is necessary to verify the differences 
between the methods. As indicated in Section 1, an autoencoder can objectively identify anomalous events. On 
the other hand, some anomalous cases identified by an autoencoder are sometimes difficult to perceive with our 
own eyes. Therefore, further development of deep learning, its verification, and comparisons with different meth-
ods are important future considerations for identifying anomalous events in the field of climate science.

Note that we interpolated the original precipitation data onto the different grid spacing between APHRODITE 
and HiFLOR (0.25° × 0.25°) and SPEAR (0.5° × 0.5°) to separately develop autoencoders. This special treatment 
for SPEAR was considered because the horizontal resolution of SPEAR is coarser than 0.25°. To investigate the 
dependence of the results on grid spacing, we repeat the same analysis using APHRODITE except that precipi-
tation anomalies were interpolated onto 0.5° × 0.5°. We found that the 0.5° resolution showed consistent results 
with the 0.25° resolution in terms of the spatial structure of anomalous events and trends in the frequency of 
anomalous events (Figures S8 and S9 in Supporting Information S1). We speculate that taking a 5-day running 
mean of the precipitation anomaly can smooth out fine-scale precipitation structure well so that the impact of the 
resolution is minimal at least in this study.

Anthropogenic forcing includes various forcings such as greenhouse gases, anthropogenic aerosols, and ozone. In 
the future, it would be desirable to estimate the impacts of individual forcings on anomalous events by carrying 
out additional large-ensemble simulations forced with time-varying single forcings only. Further enhancements 
in supercomputing would enable us to conduct such expensive simulations to further understand the physical 
mechanisms of climate changes in anomalous events.
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