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ABSTRACT

Retrospective seasonal forecasts of NorthAtlantic tropical cyclone (TC) activity over the period 1980–2014

are conducted using a GFDL high-resolution coupled climate model [Forecast-Oriented Low Ocean Reso-

lution (FLOR)]. The focus is on basin-total TC and U.S. landfall frequency. The correlations between ob-

served and model predicted basin-total TC counts range from 0.4 to 0.6 depending on the month of the initial

forecast. The correlation values for U.S. landfalling activity based on individual TCs tracked from the model

are smaller and between 0.1 and 0.4. Given the limited skill from the model, statistical methods are used to

complement the dynamical seasonal TC prediction from the FLORmodel. Observed and predicted TC tracks

were classified into four groups using fuzzy c-mean clustering to evaluate the model’s predictability in ob-

served classification of TC tracks. Analyses revealed that the FLORmodel has the highest skill in predicting

TC frequency for the cluster of TCs that tracks through the Caribbean and the Gulf of Mexico.

New hybrid models are developed to improve the prediction of observed basin-total TC and landfall TC

frequencies. These models use large-scale climate predictors from the FLOR model as predictors for gen-

eralized linear models. The hybrid models show considerable improvements in the skill in predicting the

basin-total TC frequencies relative to the dynamical model. The new hybrid model shows correlation co-

efficients as high as 0.75 for basinwide TC counts from the first two lead months and retains values around

0.50 even at the 6-month lead forecast. The hybrid model also shows comparable or higher skill in fore-

casting U.S. landfalling TCs relative to the dynamical predictions. The correlation coefficient is about 0.5

for the 2–5-month lead times.

1. Introduction

Tropical cyclones (TCs) were the most costly natural

disaster to affect the United States over the period

1980–2011 (Pielke et al. 2008; Smith and Katz 2013).

According to Smith and Katz (2013), TCs were re-

sponsible for over $400 billion in damages over the

period based on the Consumer Price Index, which

correspond to 47% of all the damage caused by all

natural disasters responsible for more than $1 billion

combined. Smith and Katz (2013) also reported appar-

ent increasing trends in both the annual frequency of

billion-dollar events and in the annual aggregated loss

from these events. Therefore, predicting TC activity at
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seasonal time scales is a topic of great scientific and so-

cioeconomic interest.

Since Gray (1984a,b) first attempted seasonal fore-

casting of TC activity for the North Atlantic, tremen-

dous effort has been devoted to construct and improve

statistical models in which observed large-scale climate

indices ahead of the hurricane season are used to predict

subsequent basin-total TC frequency (Gray et al. 1992,

1993, 1994; Klotzbach and Gray 2004, 2009; Elsner and

Jagger 2006; Klotzbach 2008) and landfalling TCs

(Lehmiller et al. 1997; Klotzbach and Gray 2003, 2004;

Saunders and Lea 2005; Elsner et al. 2006; Klotzbach

2008; Jagger and Elsner 2010). The most widely used

model for the statistical seasonal forecasts is based on

Poisson regression, which was first used by Elsner and

Schmertmann (1993). Most of the current statistical

seasonal forecasts show skill for forecasts starting from

April and later for the TC season in June–November

(e.g., Elsner and Jagger 2006), and prediction skill is

limited when the lead time increases and the target re-

gion is smaller than the entire North Atlantic (Lehmiller

et al. 1997; Klotzbach and Gray 2012).

Recent advances in dynamical modeling and compu-

tational resources have enabled prediction using high-

resolution dynamical models [see review in Camargo

et al. (2007)]. These models showed significant skill in

predicting seasonal total basin-total TCs (e.g., Vitart

and Stockdale 2001; Vitart 2006; Vitart et al. 2007;

LaRow et al. 2008; Camargo and Barnston 2009; LaRow

et al. 2010; Zhao et al. 2010; Alessandri et al. 2011; Chen

and Lin 2011, 2013; Vecchi et al. 2014; Camp et al. 2015),

with correlation values up to 0.96 between observed and

predicted North Atlantic TC counts over the 2000–10

period (Chen and Lin 2011, 2013). However, predicting

U.S. landfall frequency using dynamical models remains

challenging even though it is of paramount societal and

scientific importance (Vecchi and Villarini 2014). Vecchi

et al. (2014) andCamp et al. (2015) found some predictive

skill for TC landfall in the Caribbean, but limited skill for

U.S. landfall frequency.

Some of the limitations of dynamically forecasting

TCs can be alleviated using so-called ‘‘hybrid pre-

dictions’’ or ‘‘statistical–dynamical predictions.’’ In the

hybrid predictions, a statistical model is constructed

using the empirical relationship between observed TC

activity and predicted large-scale parameters simulated

by a dynamical model. Using the statistical model, fu-

ture TC activity is then predicted given the large-scale

parameters predicted by a dynamical model (e.g., Zhao

et al. 2010; Wang et al. 2009; Vecchi et al. 2011, 2013,

2014). For example, previous studies showed that basin-

total North Atlantic TC activity substantially correlated

with relative sea surface temperature (SST) anomalies

(i.e., local SST anomaly relative to tropical mean anom-

aly) in observations (e.g., Latif et al. 2007; Swanson 2008;

Vecchi et al. 2008; Villarini et al. 2010, Villarini and

Vecchi 2012) and dynamical models (Zhao et al. 2010;

Villarini et al. 2011; Murakami et al. 2012; Knutson et al.

2013; Ramsay and Sobel 2011). Using these simulated–

predicted SST anomalies as predictors, previous studies

achieved substantial skill in predicting basin-total TC

frequency (Zhao et al. 2010; Vecchi et al. 2011, 2013,

2014), basin-total power dissipation index (PDI), and

accumulated cyclone energy (ACE; Villarini and Vecchi

2013) compared to dynamical models. However, while

these studies showed that it is possible to skillfully fore-

cast North Atlantic TC activity at the basin scale, little is

known about the applicability of hybrid systems at

regional scales.

Vecchi et al. (2014) reported that the high-resolution

dynamical model that will be used in this study has

higher skill in predicting TCs near the coastline of the

Gulf ofMexico and Caribbean Sea relative to those near

the coastline of the northeasternUnited States (see their

Fig. 13). This indicates that models may have higher skill

in predicting–simulating one or more groups of TC

tracks. If any hybrid models could improve predictions

for the groups with poor forecasting skill, we could im-

prove the prediction skill for landfall TC frequency

as well as basin-total TC frequency. Moreover, finding

predictors in the way of constructing a hybrid model will

help the understanding of the potential physical mech-

anisms responsible for U.S. landfalling TCs. Elsner

(2003) pointed out the importance of grouping TC

tracks to improve the understanding and the prediction

of regional TC activity such as landfalling TCs. Kossin

et al. (2010) classified all North Atlantic TC tracks into

four clusters, revealing distinct characteristics for each

cluster in terms of their tracks and genesis locations,

seasonality, and relationship between frequency of TCs

and climate variability. Colbert and Soden (2012)

classified TC tracks into three groups (straight moving,

recurving landfall, or recurving ocean) highlighting

differences in the climate conditions associated with

each one of them. However, there is no information

about how predictable these TC clusters are.

In this study, we first examine the predictability of

observed basin-total TC frequency of observed TC

clusters. Second, we attempt to construct a hybrid model

to improve the prediction skill in TC frequency for each

cluster, which in turn leads to the improvements in pre-

dicting basin-total TC frequency. Third, we examine ob-

served and predicted TC landfall ratios and construct a

hybrid model to improve the prediction skill in TC

landfall ratio. Finally, we show the forecasting skill in

landfall TC frequency over the United States predicted
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by Forecast-oriented Low Ocean Resolution (FLOR)

and compare the results from our newly developed

hybrid model.

The remainder of this paper is organized as follows.

Section 2 describes the models and data used in this

study. Section 3 assesses the performance of the hybrid

models in predicting TCs within each considered TC

cluster, TC landfall ratio, and TC landfall frequency

over the United States and compares these results to the

dynamical model. Finally, section 4 provides a summary

of the results.

2. Methods

Throughout this study, we focus on the prediction of

North Atlantic TCs during July–November because

about 92% of all storms occurred during these months

over the 1980–2014 period. We focus on tropical storms

or more intense cyclones (wind speed $ 34kt; 1 kt 5
0.51m s21), and these storms are defined as TCs. The

targeted prediction is the frequency of basin-total TCs

and landfalling TCs along the U.S. coastline. In this

section, dynamical models, observed data, and TC de-

tection algorithms are described.

a. Dynamical model

The dynamical model used for retrospective seasonal

forecasts is the Forecast-oriented Low Ocean Resolu-

tion (FLOR; Vecchi et al. 2014; Jia et al. 2015) of the

Geophysical Fluid Dynamics Laboratory (GFDL)

Coupled Model, version 2.5 (CM2.5; Delworth et al.

2012). FLOR comprises 50-km mesh atmosphere and

land components, and 100-km mesh sea ice and ocean

components. The number of vertical levels for the at-

mosphere component is 32 layers (top at 1.0 hPa). For

each year and each month in the period 1980–2014,

12-month duration predictions were performed after

initializing the model to observationally constrained

conditions. Here, we defined forecasts from July, June, . . . ,

January, December initial conditions as the lead month

(L) 0, 1, . . . , 6, 7 forecasts for the predictions of TC ac-

tivity in the subsequent season (July–November).

The 12-member initial conditions for ocean and sea

ice components were built through a coupled ensemble

Kalman filter (EnKF; Zhang and Rosati 2010) data as-

similation system developed for the GFDL Coupled

Model, version 2.1 (CM2.1; Delworth et al. 2006;

Wittenberg et al. 2006; Gnanadesikan et al. 2006),

whereas those for atmosphere and land components

were built from a suite of SST-forced atmosphere–land-

only simulations to the observed values using the com-

ponents in FLOR. Therefore, the predictability comes

entirely from the ocean and sea ice and may be thought

of as a lower bound on the potential prediction skill of a

model because predictability could also arise from at-

mospheric (particularly stratospheric) and land initiali-

zation. During the simulation using FLOR, simulated

temperature and wind stress are adjusted using so-called

‘‘flux adjustment’’ in which the model’s momentum,

enthalpy, and freshwater fluxes from atmosphere to

ocean are adjusted to bring the model’s long-term cli-

matology of SST and surface wind stress closer to ob-

servations and improve simulations of TCs and

precipitation (Vecchi et al. 2014; Delworth et al. 2015).

b. Observational datasets and detection algorithm for
tropical cyclones

The observedTC ‘‘best track’’ datawere obtained from

the National Hurricane Center best track hurricane da-

tabase (HURDAT2; Landsea and Franklin 2013) as

archived in the International Best Track Archive for

Climate Stewardship (IBTrACS; Knapp et al. 2010) and

used to evaluate the TC simulations in the retrospective

seasonal predictions. We also use the Met Office Hadley

Centre SST product (HadISST1.1; Rayner et al. 2003) as

observed SST.

Model-generated TCs were detected directly from

6-hourly output using the tracking scheme documented in

Murakami et al. (2015). In the detection scheme, the

flood fill algorithm is applied to find closed contours of

some specified negative sea level pressure (SLP) anomaly

with a warm core (1-K temperature anomaly). The de-

tection scheme also requires that the TC lasts for 36

consecutive hours while maintaining a warm core as well

as a specified wind speed criteria (15.75ms21).

3. Results

a. Clustering TC tracks and forecasting skill by a
dynamical model

Wefirst applied a clustering algorithm to observed TC

tracks (Fig. 1, green tracks). The cluster technique used

here is the fuzzy c-means clustering developed by Kim

et al. (2011). Fuzzy clustering has been known to pro-

duce more natural classification results for datasets such

as TC tracks that are too complex to determine their

boundaries by looking for distinctive patterns (Kim et al.

2011). FollowingKossin et al. (2010), the final number of

clusters is equal to 4, yielding early recurving TCs (CL1),

Gulf ofMexico and Caribbean TCs (CL2), subtropical (or

extratropical transition)-type TCs (CL3), and classic

‘‘CapeVerde hurricanes’’ (CL4). Each cluster comprises a

comparable number of the total storms as shown in the

fractional ratio between 20% and 28%. When compared

to Kossin et al. (2010), we obtained similar TC clusters.
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TheTC cluster CL1, CL2, CL3, andCL4 as shown in Fig. 1

correspond to CL3, CL2, CL1, and CL4 in Kossin et al.

(2010), respectively.

Second, we assigned predicted TCs to one of the

observed TC clusters. Regardless of the lead-month

forecasts and ensemble members, we computed the

root-mean-square error (RMSE) between the predicted

(black track) and observed mean (red track) TC track

for each TC cluster. To compute RMSE, we interpolate

every TC track into 20 segments with equal length fol-

lowing Kim et al. (2011). We assign the predicted TC

track to the TC cluster with the minimum RMSE. An

alternative way is to conduct the cluster analysis using

the combined data of observed and predicted TC tracks.

However, because we obtained similar results to the

method above (figure not shown), we will use the RMSE

for the assignment. The results for assigned TC tracks

are shown in Fig. 1 as black tracks. Although the

dynamical model predicts fractional ratios of TC fre-

quency for CL1 and CL3 similar to the observations

(about 20%), it slightly overestimates (underestimates)

the fractional ratio for CL2 (CL4). Figure 2 shows

forecast skill in predicting TC frequency for each cluster

and for each lead month by the dynamical model in

terms of rank correlation (Fig. 2a) and RMSE (Fig. 2b).

For the sample size of 35 years (i.e., 1980–2014), corre-

lations of 0.33 and 0.43 are statistically significant at the

5% and 1% levels if the data are assumed to be in-

dependent in each year. Rank correlation for the basin-

total TC counts (black line in Fig. 2a) is about 0.6 for

lead month L5 0–2, and decreases to about 0.4 for L5
5–7. Vecchi et al. (2014) also reported similar results for

the correlations for the basin-total frequency. RMSE for

the basin-total TC counts (black line in Fig. 2b) is about

5–7. This large RMSE is mainly because of the un-

derestimation in predicting TC frequency as also

FIG. 1. TC tracks during the period 1980–2014 as separated by the cluster analysis yielding: Clusters 1–4. The fuzzy c-mean clustering is

first applied to the observed TC tracks (green), which yields mean tracks (red) for each cluster. All predicted TC tracks by FLOR (black)

are assigned to an observed TC cluster, regardless of any leadmonths and ensemblemembers, based on the RMSE between the predicted

and mean TC track. The numbers in the panel bottom-right corners indicate the sample size with the fractional ratio in parentheses. The

blue domain in each panel shows the region of the United States considered for landfall.
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reported in Murakami et al. (2015). Shorter lead-

month predictions show larger RMSE (black line in

Fig. 2b). Although further investigation is required,

this may be related to initial spinups due to the cold

SST bias in the initial condition in the tropical North

Atlantic, which is inherited from CM2.1 for the ini-

tialization. During the predictions for the first few

months, FLOR tries to adjust the cold bias through the

flux adjustments; however, it may take a few months to

adjust the cold biases.

Among the four TC clusters, the dynamical model

shows relatively higher skill in predicting CL2, followed

by CL1 and CL4. The higher skill in predicting CL2 is

consistent with Vecchi et al. (2014), who reported that

FLOR has higher skill in predicting TCs near the

coastline of the Gulf of Mexico and Caribbean Sea. On

the other hand, the FLOR predictions for CL3 show the

lowest skill, indicating that the prediction of TCs that

undergo extratropical transition remains challenging for

dynamical models (see also Jones et al. 2003); it is un-

clear whether this reflects a deficiency in the models and

initialization, or an inherent limit to the predictability of

the year-to-year variations of CL3 storms. In fact, this

type of storm often forms from nontropical areas of low

pressure that undergo tropical transition. The environ-

ments for these storms, especially prior to development,

may have relatively high levels of vertical shear. Con-

sequently, this type of storm formation may have lower

levels of predictability.

b. Correlations between observed TC frequency and
predicted large-scale parameters

Section 3a showed that the dynamical model has the

lowest skill in predicting CL3 and CL4 TCs. If these

biases could be improved, prediction of basin-total fre-

quency and landfalling TC frequency could potentially

be improved as well. For this purpose, we start by

constructing a hybrid model in which observed TC

frequency is regressed and predicted using some key

large-scale parameters simulated by the dynamical

model for each cluster. To identify the key parameters,

we first investigate correlations between observed TC

frequency and large-scale parameters. The large-scale

parameters considered are relative SST (RSST), geo-

potential height at 500 hPa (Z500), and zonal compo-

nent of vertical wind shear (200–850 hPa, WS). The

RSST is defined as the local SST anomaly subtracted

from the tropical mean (308S–308N) SST anomaly. We

have performed a preliminary investigation including

other parameters such as midlevel relative humidity,

low-level relative vorticity, SLP, steering flow among

others; however, these parameters did not show sig-

nificant correlations with TC frequency for any clusters

(figure not shown). Also, we prefer parsimonious

models that incorporate a smaller number of predictors

to help avoid an overfitting problem when a hybrid

model is constructed.

Figure 3 shows a correlation map between the time

series of observed TC frequency for each cluster and the

three large-scale parameters computed for each 18 3 18
grid box within the global domain during the peak sea-

son. For RSST (Figs. 3a–d), all clusters except for CL3

show higher positive correlations in the tropical North

FIG. 2. Forecast skill in predicting TC frequency for each cluster

and for each lead month predicted by the dynamical model.

(a) Rank correlation between observed and predicted and

(b) RMSE. Black line shows the basin-total TC frequency as de-

fined as the total TC frequency among the TC clusters.
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Atlantic, which is consistent with previous studies (e.g.,

Villarini et al. 2010; Vecchi et al. 2011; Villarini and

Vecchi 2012). CL2 and CL4 also show the La Niña–like
pattern in the Pacific, indicating that TC frequency for

these clusters increases during La Niña years. Although

CL1 does not show the La Niña–like pattern clearly, the

cluster shows a negative correlation in the subtropical

Pacific. CL3 is unique with respect to the other clusters

because there is no significant pattern in the correlation

even in the tropical North Atlantic, indicating that CL3

is insensitive to local SST anomalies. As for Z500

(Figs. 3e–h), there are higher positive correlations in the

subtropical central Pacific for CL1, CL2, and CL4. A

preliminary investigation implies that this correlation is

related to the Pacific–North American (PNA) pattern.

We found that when the anomaly of Z500 is positive in

the box of Figs. 3e, 3f, and 3h, Z500 in the subtropical

North Atlantic (308–508N, 558–758W) is negative

through a series of wave trains along the subtropical

westerly jet. Moreover, during the positive phase, con-

vection is active in the tropical North Atlantic and along

the West African coast, leading to more robust easterly

waves and TC development associated with the en-

hanced convection. On the other hand, CL3 shows no

correlation with Z500, which is again largely different

from other clusters. ForWS (Figs. 3i–l), there are higher

negative correlations in the tropical North Atlantic for

CL1, CL2, and CL4, which is reasonable because TC

activity is unfavorable under strong vertical wind shear.

However, it is intriguing that CL3 is not sensitive to

vertical wind shear. This is probably because CL3

comprises a mixture of TCs and extratropical transition

cyclones. The vertical wind shear and baroclinicity may

provide energy to extratropical cyclones. The frequency

of extratropical cyclones may show a positive correla-

tion with WS, whereas that of TCs shows a negative

correlation. Therefore, they cancel each other out, re-

sulting in no correlation over the Atlantic as shown in

Fig. 3k.

Kossin et al. (2010) showed how the frequency of each

cluster responds uniquely to the El Niño–Southern Os-

cillation (ENSO), theAtlanticmeridional mode (AMM,

Servain et al. 1999; Xie and Carton 2004; Chiang and

Vimont 2004; Vimont and Kossin 2007), and the North

Atlantic Oscillation (NAO; Jones et al. 1997). To elu-

cidate the potential influence of the natural variability

on the frequency of TCs for each cluster, we revisited

these responses for the TC cluster in this study. Corre-

lations between the observed TC frequency for each

cluster and the five climate indices are shown in Table 1.

First, we used the Niño-3.4 index to represent ENSO.

The Niño-3.4 index is obtained from the mean SST

FIG. 3. Correlation map between the time series of observed TC frequency for (top to bottom) each cluster and (left to right) simulated

mean large-scale parameters during July–November for each 18 3 18 grid box. (a)–(d) RSST, (e)–(h) Z500, and (i)–(l) WS. Rectangles

indicate domains for predictors with red (blue) rectangles showing positive (negative) signs.
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anomaly in the region bounded by 58N and 58S and be-

tween 1708 and 1208W. CL2 shows the highest negative

correlation with the Niño-3.4 index in addition to a

relatively higher and statistically significant correlation

for CL4. This result is consistent withKossin et al. (2010)

who argued that the tropical TC clusters (i.e., CL2 and

CL4) show relatively higher correlations with ENSO

than the midlatitude TC clusters (i.e., CL1 and CL3) do.

Moreover, this result suggests that if FLORwere able to

predict El Niño (or La Niña) accurately, it should show

good skill in predicting TC frequency for the CL2 and

CL4. In fact, FLOR shows higher skill in predicting CL2

(highest correlation) andCL4 (smallest RMSE) than the

other TC clusters (Fig. 2).

Kossin et al. (2010) also examined the effect of AMM

on TC frequency for each cluster. The AMM is the in-

ternal coupled mode of ocean subsurface temperature

and lower atmospheric wind fields in the tropical and

subtropical North Atlantic (Chiang and Vimont 2004).

The AMM index is the standardized first expansion

coefficient of the singular value decomposition (SVD)

mode for the SST and zonal andmeridional components

of the 10-m wind field. The input data are defined over

the tropical to subtropical region (218S–328N, 08–748W),

and seasonal cycle, Niño-3.4 index, and linear trend are

removed for each grid cell. During a positive phase of

the AMM, the Atlantic intertropical convergence zone

(ITCZ) is displaced northward. Warmer-than-normal

SSTs and weaker-than-normal vertical wind shear dur-

ing positive phases of the AMM tend to enhance TC

development in the Atlantic (Vimont and Kossin 2007).

The slow variation of the AMM generally reflects the

decadal variability that is described by the Atlantic

multidecadal oscillation (AMO; Delworth and Mann

2000; Kossin et al. 2010). We calculated the AMO index

following Deser et al. (2010). The AMO index is defined

as the area-average SST anomaly over the North At-

lantic (08–708N, 08–908W) minus the global mean SST

anomaly. Table 1 shows correlations between the AMM

or AMO index versus TC frequency for each cluster.

The CL1, CL2, and CL4 (CL1 and CL2) show significant

correlation with the AMM (AMO) index. These results

are consistent with Kossin et al. (2010), pointing to the

potential use of the SST anomaly over the tropical At-

lantic as a predictor in a hybrid model to predict TC

frequency for these clusters.

Kossin et al. (2010) also showed that the May–June

NAO index (Hurrell et al. 2015), which is defined as sea

level pressure difference between Gibraltar and Rey-

kjavik, Iceland (Jones et al. 1997), relates significantly

with midlatitude storms during the summer months (i.e.,

our CL3 storms). Here, we revisit the relationship be-

tween the NAO index and TC frequency for each clus-

ter. However, we could not find a significant relationship

between them (Table 1). The NAO tends to be weaker

during the summer months because of weaker equator–

pole temperature gradients. Alternatively, Folland et al.

(2009) redefined the summer NAO (SNAO) consider-

ing the difference in spatial patterns of NAO between

summer and winter. In this study, the SNAO is defined

as the second empirical orthogonal function (EOF)1 of

summertime (July–August) mean sea level pressure

over the extratropical North Atlantic (258–708N, 708W–

508E) for which the spatial pattern of the SNAOmode is

similar to the ‘‘mobile NAO’’ reported by Portis et al.

(2001) (Fig. 4). Table 1 shows correlations between the

SNAO index and TC frequency for each cluster. The

CL3 shows a negative correlation, which is consistent

with Kossin et al. (2010), indicating that the CL3 TCs

tend to be more frequent during a negative phase of

SNAO. However, the correlation is still small and not

statistically significant, as for the NAO. The clear re-

lationship between the NAO and TC frequency of CL3

reported by Kossin et al. (2010) was not obtained for

this study.

TABLE 1. Rank correlation coefficients between the observed interannual variability of climate indices and the observed TC number for

each cluster. The climate indices are Niño-3.4 (July–November mean), AMM (July–November mean), AMO (July–November mean),

NAO (May–June mean), and SNAO (July–August mean). The observed TC number is the mean of July–November for each year.

Statistical significance is highlighted according to the level of significance.

Index Cluster 1 Cluster 2 Cluster 3 Cluster 4

Niño-3.4 (July–November mean) 20.06 20.47a 10.15 20.35b

AMM (July–November mean) 10.51a 10.36b 20.13 10.36b

AMO (July–November mean) 10.43a 10.37b 20.13 10.26

NAO (May–June mean) 20.15 20.09 20.14 10.04

SNAO (July–August mean) 10.24 10.21 20.24 10.13

a Statistically significant at 99% level.
b Statistically significant at 95% level.

1When EOF is applied to observed July–August mean SLP data

during the period 1980–2014, the second mode, as shown in Fig. 4,

explains 21.1% of the total variance.
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CL3 does not show significant correlations with any

parameters and climate indices, suggesting that CL3

may have a substantially larger stochastic element to its

variability than the other clusters, and may thus be in-

herently less predictable. However, we want to identify

any key large-scale parameters to construct a hybrid

model. When the correlation is computed between ob-

served TC frequency and RSST, observations (Fig. 5b)

and dynamical models (Fig. 5a) show relatively higher

correlations in the four domains. Although physical

mechanisms explaining the relationship between At-

lantic CL3 TCs and the remote SSTs are difficult to in-

terpret, we utilized RSST in these four domains as a

predictor for CL3 TCs.

The domains of the predictors used for the hybrid

model are shown in the rectangles in Fig. 3. The dy-

namical model should also have significant forecast skill

in predicting these large-scale parameters for each

FIG. 4. (a) July–August mean SLP regressed onto the SNAO index (hPa s21) with orange (blue) showing positive

(negative) values. (b) Time series of SNAO index for the period 1980–2014 (s).
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domain. Figure 6 shows anomaly correlations for the

leadmonths 0, 3, and 6, respectively, for each parameter.

The red shaded area is the region where the anomaly

correlation exceeds 0.5, revealing that the dynamical

model has skill in predicting the large-scale parameters

for each domain used for predictors, even for the lead

month 6. The skill in predictions and the correlation with

respect to the observations justifies the use of the large-

scale parameters in the domains as the predictors for the

hybrid model.

c. Hybrid Poisson regression model

Using the predictors discussed in section 3b, a Poisson

regression model (e.g., Villarini et al. 2010; Elsner

and Jagger 2013) is constructed to predict TC fre-

quency for each cluster using large-scale parameters

predicted by the dynamical model of FLOR. First of all,

the probability of any TC frequency (5y) in the ith year

is obtained when the mean frequency (i.e., rate) li is

given as follows.

p(Y
i
5 y)5

e2lil
y
i

y!
, (1)

where y 5 0, 1, 2, . . . , ‘. The Poisson regression model

is expressed as

log(l
i
)5b

0
1 �

p

j51

b
j
x
i,j
. (2)

There are p predictors (indicated by the xj values) and

p 1 1 parameters (bj values). The model uses the loga-

rithm of the rate as the response variable, but it is linear

in the regression structure. First, we determine bj given

the observed Yi and predicted xi,j (regression or train-

ing). Then, the cross validation is performed to evaluate

FIG. 5. Correlation map between RSST and CL3 TC frequency during July–November. (a) Correlation between

observedRSST and predicted TC frequency by themodel for CL3 at leadmonth 0. (b) As in (a), but for correlation

between observed RSST and observed TC frequency for CL3. Red (blue) rectangles indicate domains for pre-

dictors showing a positive (negative) sign.

FIG. 6. Anomaly correlation for (left to right) simulated large-scale parameters for (top to bottom) each lead month L 5 0, 3, and 6:

(a)–(c) RSST, (d)–(f) Z500, and (g)–(i) WS. The rectangles in these domains are the same as in Figs. 3 and 5.
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the model skill. Here we apply so-called leave-one-out

cross validation (LOOCV; Elsner and Jagger 2013). In

the LOOCV, we first exclude a single year of observa-

tions and predictors; then, we determine the coefficients

of the Poisson regression model using the remaining

years. Using the model, the rate of TC frequency for the

excluded year is predicted. This is done for 35 years,

removing each year’s data point successively. The use of

the predictors from the fixed domains yielded from all of

the years, including the prediction year, may lead to

underestimations of prediction errors in LOOCV (e.g.,

chapter 7.10.2 in Hastie et al. 2009). Therefore, the hy-

brid model should be built completely from scratch for

each of the cross-validation evaluations. Here, for each

evaluation year we perform the clustering analysis, and

we select the predictors by making correlation maps

between the observed TC frequency and simulated

large-scale fields using all of the data except for the

evaluation year. Because leaving one year does not

change correlation maps significantly from those ob-

tained using all the years, the selected predictors for

each evaluation step are identical to the original pre-

dictors; however, the domains of predictors are slightly

shifted considering the maximum correlations.

Figure 7 reveals results of training (Figs. 7a–d) and

LOOCV (Figs. 7e–h) for each cluster at lead month 0.

To compare skill in these hybrid models with the dy-

namical model, Fig. 8 shows comparisons of rank cor-

relations (Figs. 8a,e) and RMSE (Figs. 8b,f) between the

dynamical model (solid lines) and LOOCV (dashed

lines). Predictions for all clusters using the hybrid ap-

proach are improved in LOOCV in terms of RMSE for

every lead month. Although CL1 was not improved

in terms of correlation, most of the clusters show im-

provements in simulating observed interannual varia-

tions.When these predicted TC frequencies are summed

up, we derive the basin-total TC frequency. The basin-

total frequency also shows higher skill in the hybrid than

in the dynamical model (Figs. 8e–h). We obtain a max-

imum correlation coefficient of 0.75 at lead month 1 and

the correlation remains relatively high at 0.55 at lead

month 7. On the other hand, the values of the correlation

FIG. 7. Results of the interannual variation of TC frequency by (a)–(d) the regression and (e)–(h) the LOOCV for (top to bottom) each

cluster at lead month 0. Observed (regressed or cross validated) TC frequency is shown in black (blue). Blue regions indicate 10% bottom

range and 90% top range computed from random resampling based on the Poisson distribution. Numbers shown in each panel show rank

correlation and RMSE between the black and blue lines. The asterisks indicate statistical significance of correlations at the 99% level.
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FIG. 8. (a)–(d) Comparisons of forecast skills between dynamical model or climatology (solid line) and hybrid

model (dashed line) in predicting TC frequency for each cluster and for each lead month. (a) Rank correlation

between observations and models. (b) RMSE between observations and models. (c) MSEp between climatology

and hybrid model. (d) MSSS between observations and models. (e)–(h) As in (a)–(d), but for basin-total TC

frequency.
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coefficient for the dynamical model are 0.65 and 0.35 at

leadmonth 1 and leadmonth 7, respectively, highlighting

the improvements introduced by the hybrid model in

predicting basin-total TC frequency.

Model skill is also assessed using the probabilistic

form of the mean-square error (MSEp; Elsner and

Jagger 2013) as defined in the following equation:

MSEp5
1

n
�
n

i51
�
‘

j50

p
i
( j)( j2 o

i
)2 , (3)

where i is index of year, j is number of TCs, n is number

of years (535), pi is the probability of j TCs in the ith

year given the predicted rate li rate [i.e., Eq. (1)], and

oi is the observed TC count. Because the dynamical model

has no probabilistic form of pi, we compared MSEp with

the statistical model based on the climatology in which

Eq. (2) is replaced with the following equation:

log(l)5b
0
. (4)

Figures 8c and 8g compare MSEp between the hybrid

and climatological models, highlighting the usefulness of

the hybrid model, with the exception of the hybrid

model for CL1, which is equivalent to the climatological

forecast.

Another metric for model skill, the mean-square skill

score (MSSS; Kim et al. 2012; Li et al. 2013) is defined

with the following equation:

MSSS5 12
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, (5)

where n is the total number of years; oi and fi are the

number of TCs from observations and predictions for

the ith year, respectively; and l is the observational

mean number of TCs. The MSSS is a metric for the skill

comparison of the model and climatological forecasts,

with high values indicating a good model (Kim et al.

2012; Li et al. 2013). Figures 8d and 8h compare MSSS

between the hybrid and climatological model, revealing

higher scores for the hybrid model relative to the cli-

matological model in predicting TC frequency for each

cluster and whole basin.

The statistical–dynamical model developed in this

study is further compared with previous available fore-

casts. The statistical forecasts issued by Colorado State

University (CSU; Klotzbach and Gray 2015) reported

that forecast skill in predicting named storms from June

during 1982–2014 is 10.71 in terms of correlation co-

efficient, which is equivalent to the skill of our new

model. Although the focus was on hurricanes (not for

named storms), Wang et al. (2009) examined the fore-

cast skill of a statistical–dynamical model using the

vertical wind shear predicted by the Climate Forecast

System (CFS) during August–October over the main

development region as a predictor. They showed cor-

relation coefficients of about 0.7 and 0.4 between ob-

served and predicted hurricane counts for the leadmonths

0 and 6, respectively. Moreover, Vecchi et al. (2011)

showed a high correlation coefficient of about 10.8 be-

tween observed and predicted hurricane counts for the

lead-month-0 forecasts for the period 1982–2009 using

simple predictors of tropical Atlantic and global mean

SST anomalies. Because statistical modeling of sea-

sonal hurricanes generally shows higher prediction skill

than that of named storms (P. J. Klotzbach 2015, per-

sonal communication), constructing a statistical–dynamical

model for hurricanes is an interesting topic for future

studies.

d. Correlations between observed TC landfall ratio
and predicted large-scale parameters

Section 3c revealed that the skill in predicting basin-

total TC frequency is higher in the hybrid than in the

dynamical model. Therefore, skillful forecasting of the

fraction of total TCs making landfall in the United

States could lead to accurate predictions of TC landfall

activity when combined with predictions of basin-total

TC frequency. In this section, we first investigate the

physical drivers for the observed landfall ratio. The

landfall domain defined in this study is the coastal region

of the United States as identified in the blue region in

Fig. 1. In this study, once a TC propagates into the blue

region in Fig. 1, we count one for TC landfall frequency

regardless of multiple landfall events for the same TC.

Figure 9 shows the interannual variation of basin-total

TC frequency (red), landfall TC frequency in theUnited

States (blue), landfall ratio (black), and Niño-3.4 index

(green) in the observations. The rank correlation be-

tween basin-total TC frequency and landfall ratio is 0.08,

indicating that there is no strong linear relationship

between the two variables (Holland 2007; Kossin et al.

2015). Indeed, while there were 18 TCs in 2010, which

was the second largest TC frequency during the period

1980–2014, only one of themmade landfall in theUnited

States that year. The lack of relationship between basin-

total and landfall TC frequencies is mainly due to sys-

tematic and significant relationships between climate

and TC track variability (Holland 2007; Kossin et al.

2010, 2014, 2015; Villarini et al. 2012).

A number of previous studies relate U.S. landfalling

frequency to NAO and Southern Oscillation index

(SOI; Elsner and Kocher 2000; Elsner et al. 2000; Elsner
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et al. 2006; Elsner and Jagger 2006). However, little is

known for landfall ratio. The observed relationship be-

tween TC landfall ratio and climate indices was first

analyzed by Villarini et al. (2012). They constructed a

statistical model to predict landfall ratio using three

predictors [May–JunemeanNAO, the SOI, and tropical

mean SST (308S–308N)]. Here we computed the corre-

lation coefficient between observed TC landfall ratio

and observed climate indices (Table 2). Although sta-

tistical significance is low, we found that the observed

TC landfall ratio is moderately and negatively corre-

lated with the observed Niño-3.4 index, indicating that

TC landfall ratio tends to be higher (lower) during La

Niña (El Niño) years. The increased landfall ratio during
La Niña years is consistent with Bove et al. (1998), who

examined the effects of El Niño on U.S. landfalling

hurricanes and found that the probability of U.S. hur-

ricanes increased from 28% during El Niño years to

66% during La Niña years. The higher probability of

U.S. landfall in LaNiña years relative to El Niño years is
likely due to differences in the steering flow as well as an

increase in storm formations. In addition, the favorable

large-scale conditions in La Niña years tend to be more

conducive across the basin, allowing storms to persist at

hurricane strength and reach coastal regions of the

United States. However, although the rank correlation

between observed landfall ratio (black line in Fig. 9) and

the Niño-3.4 index (green line in Fig. 9) is negative

(i.e., 20.24; Table 2), the correlation is not statistically

significant at the 90% level (p value 5 0.17), indicating

FIG. 9. (top) Observed time series of TC frequency and landfall ratio in the NorthAtlantic. The red line indicates

observed basin-total TC frequency, whereas the blue line indicates observed landfall TCs over the United States.

The black line shows the landfall ratio. (bottom) The green line shows the Niño-3.4 index that is obtained from the

mean SST anomaly in the region bounded by 58N and 58S and between 1708 and 1208W.

TABLE 2. Rank correlation coefficients and their p value (in

parentheses) between the observed interannual variability of cli-

mate indices and the observed landfall ratio. The climate indices

are the same as in Table 1. The observed landfall ratio is the mean

of July–November for each year.

Index Rank correlation (p value)

Niño-3.4 (July–November mean) 20.24(0.170)

AMM (July–November mean) 10.07(0.682)

AMO (July–November mean) 10.19(0.287)

NAO (May–June mean) 10.12(0.507)

SNAO (July–August mean) 10.40(0.019)a

a Statistically significant at 95% level.
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that landfall ratio is only slightly higher during La Niña.
We also found a La Niña–like pattern in the correlation

between the observed TC landfall ratio and predicted SST

for each grid cell (Fig. 10). This highlights the model’s

predictability of ENSO even for the lead-month-7 fore-

casts, which in turn leads to the predictability of TC land-

fall ratio through the accurate prediction of ENSO. Other

natural variability of AMM and AMO show positive

FIG. 10. Correlation map between observed TC landfall ratio over the United States and

simulated SST anomalies for (a)–(d) each lead month: 0, 3, 5, and 7.
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correlations with the TC landfall ratio, even though they

are not statistical significant (Table 2). We also prelimi-

narily computed correlations between TC landfall ratio

and large-scale parameters of steering flows at 700hPa

and geopotential height at 700hPa because TCs are

steered approximately at the 700-hPa level. Although

observations show marginal correlations in the North

Atlantic, FLORdoes not show significant correlations for

these parameters. This is probably because of the diffi-

culties in predicting large-scale flows even a month in

advance partially because the atmosphere is not initial-

ized. Further comparisons with the forecast systems in

which atmosphere is initialized are required.

Table 2 shows a correlation between interannual

variation of the observed NAO index and the observed

TC landfall ratio. It reveals that there is no significant

correlation between them in contrast to the significant

relationship reported by the previous literature (e.g.,

Villarini et al. 2012). Although further investigation is

required, there are a number of uncertainties for the

inconsistency among the studies, such as the difference

in analysis periods or the domain defined for the TC

landfall. Nevertheless, the observed SNAO index shows

the highest correlation (10.40) with the observed TC

landfall ratio, indicating that SNAO has the potential

to be a good predictor for TC landfall ratio. Figure 11

shows correlation maps between observed TC landfall

ratio during July–November and observed–predicted

SLP anomaly during (July–August). Although the

observations (Fig. 11a) show a marked positive

anomaly over the central North Atlantic (308–408N,

308–508W) associated with a positive phase of SNAO,

FLOR (Figs. 11b–d) does not show the positive cor-

relation over the region even for the lead-month-0

forecast (Fig. 11b). These results indicate poor skill in

predicting NAO–SNAO by FLOR. We assume that

this poor skill is probably due to the lack of vertical

resolution to resolve the stratosphere (L. Jia 2015,

personal communication) in addition to the lack in

atmospheric initialization. Scaife et al. (2005) suggest

a source of NAO variability is within the lower

stratosphere, pointing to the need to reproduce the

stratospheric variability in the models to fully simu-

late surface climate variations. In fact, a vertically

high-resolution model shows high skill in predicting

NAO (Scaife et al. 2014), although the lead month for

the skillful predictions is still short (one month). Be-

cause FLOR does not show any useful information on

FIG. 11. Correlation map between observed mean TC landfall ratio over the United States during July–

November and observed–simulatedmean SLP anomalies during July–August: (a) observations, (b)–(d) predictions

from lead month 0, 3, and 6, respectively, with orange (blue) showing positive (negative) values.
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SNAO, we use only SST anomaly as a predictor in the

hybrid binomial regression model, as will be shown in

the following subsection.

e. Hybrid binomial regression model

As shown in section 3d, SST anomalies in the tropical

Pacific are correlated with the TC landfall ratio for the

United States as an indication of La Niña years. Al-

though the correlation is not high, we use the SST

anomalies in the domain shown in Fig. 10 as a predictor

for the hybrid model for predicting TC landfall ratio

using a binomial regression model (Villarini et al. 2012).

Following Villarini et al. (2012), let us define Y1 and Y2

as two Poisson random variables with means of m1 and

m2. Let us define m as their sum (m 5 Y1 1 Y2), which

also follows a Poisson distribution with mean equal to

m1 1 m2. In this study, m represents the basin-total TC

frequency, whereas Y1 represents the frequency of

landfall TCs over the United States and Y2 represents

frequency of nonlandfall TCs. Givenm, the distribution

of Y1 can be written as

f (Y
1
5 y jm)5 G(m1 1)

G(y1 1)G(m2 y1 1)
my(12m)(m2y) ,

(6)

where m 5 m1/(m1 1 m2). The mean and the variance of

Y1/m are m and m(12 m), respectively. Similar to what is

described in Eq. (2), we can relate the parameter m to a

vector of p predictors:
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The dependence of m on the predictors can be written

explicitly as
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Here we consider one predictor (i.e., p 5 1) of SST as

discussed above. Similar to the procedure described in

section 3c, we first determine bp given the observed

m and simulated xp. Then, the LOOCV is performed to

evaluate the hybrid model. As in section 3c for each

evaluation year during the LOOCV process, we select

the predictors by making correlation maps between the

observed TC landfall ratio and simulated large-scale

fields using all of data except for the evaluation year.

Figure 12 reveals results of training (Figs. 12a–c) and

LOOCV (Figs. 12d–e) for lead months 0, 3, and 6, re-

spectively. The overall correlation is relatively low for

LOOCV (i.e., at most 0.37), indicating that landfall ratio

remains difficult to predict even when using the hybrid

model. To compare skill in the hybrid model with the

dynamical model, Fig. 13 shows comparisons of rank

correlations (Fig. 13a), RMSE (Fig. 13b), and MSSS

(Fig. 13c) between the dynamical model (solid line) and

FIG. 12. Results of interannual variation of TC landfall ratio by (a)–(c) the regression and (d)–(f) the LOOCV for each lead month:

(top) 0, (middle) 3, and (bottom) 6. Blue areas indicate the range between 10% and 90% computed from random resampling based on the

binomial distribution. Numbers shown in each panel indicate rank correlation and RMSE between the black and blue lines. The asterisks

indicate statistical significance of the correlations at the 99% level.
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LOOCV (dashed line). Although rank correlation is

lower when compared with the basin-total TC frequency

(Fig. 8e), the hybrid model shows higher skill in pre-

dicting landfall ratio than the dynamical model does.

RMSE (Fig. 13b) looks similar between the hybrid and

dynamical models, although the hybrid model shows

slightly lower RMSE than the dynamical model. MSSS

(Fig. 13c) shows slightly higher skill in the hybrid model

than the dynamical model.

f. Synthesized hybrid model for predicting landfall
TCs over the United States

Here we have two hybrid models: the Poisson re-

gression model to predict TC frequency for each cluster,

yielding basin-total TC frequency by summing all TC

clusters (section 3c), and the binomial regression model

to predict TC landfall ratio over the United States

(section 3e). By combining the two hybrid models, we

can make predictions of TC landfall frequency over the

United States. A schematic diagram is shown in Fig. 14

for the synthesized hybrid model. Given the key large-

scale parameters for a specific year (step 1), we predict

the mean TC frequency for each cluster (l1,2,3,4; step 2).

Given the predicted mean l, random resampling of TC

frequency is performed for k times based on the Poisson

distribution as shown in Eq. (1),2 thereby yielding k

samples of TC frequency (n) for each cluster (step 3).

For each iteration, TC frequency for all the clusters is

summed up, providing a sample of basin-total TC fre-

quency (N) (step 3). A similar resampling procedure is

performed for the TC landfall ratio, yielding k samples

of landfall ratio (U; steps 4–6). For each sample, the

landfall TC frequency over the United States (X) is

computed by multiplyingN andU (step 7). Based on the

k samples for X, we can compute a probabilistic range

(e.g., range of 10% bottom bound or 90% top bound) of

the predicted TC landfall frequency as well as a meanX

value for each year.

Figure 15 shows comparisons between the dynamic

model and the synthesized hybrid model in terms of

landfall TC frequency over the United States. First of

all, the dynamical model systematically underestimates

landfall TC frequency (Figs. 15a–c), whereas this under-

estimation is improved in the hybrid model (Figs. 15d–f).

Moreover, the amplitude of the interannual variation is

much larger in the hybrid than the dynamical model. For

example, the anomalous year of 1998 is well predicted

by the hybrid model. On the other hand, the hybrid

model significantly overestimates TC landfall frequency

in 2010. In 2010, most TCs formed in the far eastern

Atlantic and tended to recurve before they made landfall

over theUnited States. That year was characterized by La

Niña conditions. From Figs. 3a–d and Fig. 10, both TC

frequency for each cluster and TC landfall ratio are ex-

pected to be large for 2010. That year is also characterized

by negative SNAO (Fig. 9) that is unfavorable to landfall

FIG. 13. (a)–(c) As in Figs. 8(e),(f),(h), but for the TC landfall ratio

over the United States.

2We used the function ‘‘rpois’’ in the statistics tool R, which is

based on Ahrens and Dieter (1982).
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TCs. Had FLOR been able to predict the negative

SNAO, it would have been possible to avoid the large

number of landfall TCs in 2010 by the hybrid and the

dynamical models.

Figure 16 summarizes the comparisons of rank cor-

relations, RMSE, and MSSS for each lead month be-

tween the dynamical and hybrid models. The hybrid

model shows comparable or higher skill for most of the

lead months in terms of rank correlations relative to the

dynamical forecasts, although correlations show no sig-

nificant differences in the first three and the last two lead

months (Fig. 16a). The hybrid model shows smaller

RMSE (higher MSSS) for all lead months relative to the

dynamical forecasts. We can conclude that our new

FIG. 14. Schematic diagram showing synthesized hybrid model to predict landfall TC

frequency. Details are explained in the main text.

FIG. 15. Results of the interannual variation in the frequency of landfall TCs by (a)–(c) the dynamical model and

(d)–(f) the synthesized hybridmodel for each leadmonth of (top) 0, (middle) 2, and (bottom) 4. Blue areas indicate

10%–90% range computed from random resampling. Numbers in each panel show rank correlation and RMSE

between the black and blue lines. The asterisks indicate statistical significance of the correlations at the 99% level.

2118 MONTHLY WEATHER REV IEW VOLUME 144



hybrid model retains forecast skill up to lead month 5

with a correlation coefficient of 10.5 and forecast

RMSE of 2.0 storms per year for U.S. landfalling TCs.

The forecast skill in predicting landfall TC count is

further compared with previous studies using statisti-

cal and statistical–dynamical models, although direct

comparisons are difficult because of difference in analyzed

period and targeted domain. Our statistical–dynamical

model shows comparable skill to the statistical model

developed by Elsner et al. (2006), which shows a

correlation coefficient of 10.35 between observed

and predicted U.S. landfalling hurricane counts from

February (i.e., lead month 6) forecasts for the period

1992–2004. In addition to the different time periods

for both training and verification, it is also worth

highlighting that the focus of Elsner et al. (2006)

was on landfalling hurricanes rather than TCs more

generally as done in this study. Kim et al. (2015)

reported a correlation coefficient of 10.56 (10.57)

between the observed TC number affecting NewYork

State and their statistical (and statistical–dynamical)

model predictions from May during 1979–2013. Al-

though it is a statistical model, Yan et al. (2015)

showed a correlation coefficient of 10.60 between

observed and predicted landfall TC counts on the

eastern seaboard of the United States after August for

the period 1950–2012 using May–July climate indices

of AMM, AMO, and ENSO as predictors. Camp et al.

(2015) used a dynamical model and showed limited

skill (10.12 for correlation coefficient) in predicting

U.S. landfalling TCs from May. Overall, although

seasonal forecasting of U.S. landfalling TCs has been

improving over the years, the forecast skill is at

most 10.60 among the cited studies, highlighting that

the forecasting of landfalling activity is much more

challenging than the forecasting of the overall TC

activity.

We also preliminarily checked the performance of an

alternative statistical method in which TC landfall

frequency is computed using the constant climatologi-

cal mean landfall ratio based on observations along

with the basin-total TC frequency predicted from the

Poisson regression model. Although the method shows

some improvements in terms of RMSE for the lead

month 0 and 1 predictions relative to the synthesized

hybrid model, the scheme does not show improvements

in terms of rank correlation.

The lead month 5 shows the highest skill in pre-

dicting landfall TC frequency (Fig. 16). This is mainly

because the prediction skill in landfall ratio is the

highest for the lead month 5 (Fig. 13) because of the

highest correlations between the observed landfall

ratio and predicted SST among all the lead months

(Fig. 10). Although it is not still clear why lead month 5

shows the highest correlations for the SST in the key

domains, accurate predictions for landfall TC fre-

quency seem to be critically dependent on the accurate

prediction for landfall ratio in which the present study

shows limited skill (Fig. 13).

FIG. 16. (a)–(c) As in Figs. 8(e),(f),(h), but for frequency of landfall

TCs over the United States.
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4. Summary

In this study, we evaluated retrospective seasonal

forecasts based on a GFDL high-resolution coupled

climate model (FLOR), and we constructed new hybrid

models to improve the forecast skill in predicting the

frequency of basin-total and U.S. landfalling TCs. First,

we classified observed TCs into four groups of TCs using

the fuzzy c-means clustering algorithm. Predicted TCs

by FLOR are assigned to one of the observed clusters.

We found that FLOR has high skill in predicting the

Gulf of Mexico and Caribbean TCs (CL2), whereas it

has low skill in predicting the subtropical TCs (CL3).

The CL3 storms also exhibited limited statistical re-

lationships to large-scale climate conditions, suggesting

that the limited prediction skill may reflect limited un-

derlying predictability.

Second, we constructed a hybrid model to predict TC

frequency for each cluster using the empirical relation-

ship between observed TC frequency and predicted

large-scale parameters by a dynamical model. The hy-

brid model shows equivalent or higher skill in predicting

TC frequency for each cluster relative to the dynamical

model. The improvements for each cluster result in im-

proved prediction of basin-total TC frequency. We ob-

tained maximum andminimum values of the correlation

coefficient equal to 0.75 and 0.55 at lead months 1 and 7,

whereas those for counting TCs directly from the dy-

namical model are 0.65 and 0.35, respectively.

Third, we evaluated the retrospective prediction skill

for the TC landfall ratio over the United States, re-

vealing that the dynamical predictions have no skill in

predicting the landfall ratio when looking at simulated

storms directly. Meanwhile, the observed TC landfall

ratio is analyzed, revealing that the landfall ratio has no

correlation with basin-total TC frequency. However, the

observed interannual variation in landfall TC ratio has a

moderate correlation with the SST anomaly in the

tropical Pacific. This is associated with a La Niña–like
pattern, indicating that TC landfall ratio is higher during

La Niña years. A binomial hybrid model was con-

structed for better prediction of U.S. landfalling TC

ratios using the simulated SST anomaly in the tropical

Pacific. The hybrid model predicts interannual varia-

tions of TC landfall ratio better than the dynamical

model does.

By combining the two hybrid Poisson and binomial

models, the frequency of TC landfall over the Unites

States is predicted. The synthesized hybrid model shows

comparable or better prediction of TC landfall frequency

relative to the dynamical model in terms of RMSE, cor-

relation, and MSSS between predicted and observed

TC landfall frequency and amplitude of interannual

variation. We can conclude that the new hybrid model

retains forecast skill up to leadmonth 5 with a correlation

coefficient of 0.5 and a forecast error of 2.0 for TC land-

fall for the United States.

In this study, we used the results of retrospective

forecasts by FLOR in which the initial state of the at-

mosphere and land components are not constrained by

observations, while the oceanic component is. We hy-

pothesize that if we initialized the atmospheric compo-

nent, we might obtain better skill in predicting TC

activity in the North Atlantic. Similar tests with FLOR

show improved seasonal predictions of land surface

conditions with atmospheric initializations (Jia et al.

2016). Recent studies show that the dynamical models

have longer prediction skills of 2 weeks or more because

of accurate simulation of intraseasonal oscillations such

as theMadden–Julian oscillation (MJO; e.g., Xiang et al.

2015a,b; Nakano et al. 2015). Further, Murakami et al.

(2015) showed that FLOR has the capability of

simulating a strong MJO signal. If atmospheric initial

conditions contain observed MJO phase and amplitude,

the dynamical model may predict TC activity well at

least for the shortest lead-month forecast of L 5 0.

Moreover, Murakami et al. (2015) showed better pre-

diction of 1997/98 TC activity using the higher-

resolution version of FLOR (i.e., HiFLOR) in

addition to the better simulations of large-scale param-

eters than FLOR. In the future, we plan to construct a

hybrid model using large-scale parameters simulated

using HiFLOR to improve the skill in predicting TCs in

the North Atlantic. The new hybrid model is computa-

tionally more expensive relative to a statistical model

because the hybrid model requires simulated large-scale

fields from a dynamical model. However, given the se-

lected predictors, it is possible to obtain their forecasts

for the areas of interest very easily trough the North

American Multi-Model Ensemble project (NMME;

Kirtman et al. 2014). Of particular interest is to apply

the new hybrid model to the NMME predictions in

order to see if we obtain higher skill by the multimodel

ensembles.
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