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Model description
We used the Geophysical Fluid Dynamics Laboratory 
(GFDL) Forecast-oriented Low Ocean Resolution 
model (FLOR; Vecchi et al. 2014). FLOR comprises 
50-km mesh atmosphere and land components 
and 100-km mesh sea ice and ocean components. 
The atmosphere and land components of FLOR are 
taken from the Coupled Model version 2.5 (CM2.5; 
Delworth et al. 2012) developed at GFDL, whereas 
the ocean and sea ice components are based on the 
GFDL Coupled Model version 2.1 (CM2.1; Delworth 
et al. 2006; Wittenberg et al. 2006; Gnanadesikan et 
al. 2006).

A suite of simulations (see the following section for 
experimental design) were conducted using the “flux 
adjustments” approach (Magnusson et al. 2013; Vec-
chi et al. 2014), which adjusts the model’s momentum, 
enthalpy, and freshwater fluxes from atmosphere to 
ocean and so brings the long-term climatology of sea 
surface temperature (SST) and surface wind stress 
closer to the observations.

Detection algorithm for tropical cyclones
Model generated tropical cyclones (TCs) were de-
tected following Murakami et al. (2015), and the de-
scription below is taken from Section 2c in Murakami 
et al. (2015). 

Model-generated TCs were detected directly 
from 6-hourly output using the following tracking 
scheme relying primarily on sea level pressure (SLP) 
and temperature anomaly (ta) averaged between 300 
and 500 hPa.

1. Local minima in a smoothed SLP field are 
detected. The location of the center is fine-
tuned by fitting a biquadratic to the SLP field 
and placing the center at its minimum.

2. Closed contours of some specified interval dp 
(here 2 hPa) are found about each center. The 
Nth contour is identified as the contiguous 
region surrounding a low of central pressure 
P, with pressures less than dp × N + P, as 
found by a “flood fill” algorithm. Hence, the 
contours need not be circular; however, there 
is a maximum distance of 3000 km that the 
algorithm will search away from the candi-
date low center.

3. If the above closed contours are found, the low 
is counted as a storm center at that time. The 
tracker then tries to find as many closed con-
tours about that low that it can find without 
going too far from the low center or running 
into contours claimed by another low. The 
maximum 10-m wind inside the set of closed 
contours is considered to be the maximum 
wind speed for the storm at that time.

4. Warm cores are found through a similar pro-
cess as above: closed 1-K contours about the 
maximum ta are sought out within a storm’s 
identified contours, which are not more than 
1° apart from the low center. This contour 
must have a radius less than 3° in distance. 
If no such core is found, the center is not 
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rejected, but is simply marked as not being a 
warm-core low.

5. Storm centers are connected into a track by 
taking a low center at time T – dt, extrapolat-
ing its motion forward dt, and then looking 
for storms within 750 km. Deeper lows get 
first choice of track.

6. Final TCs are selected by considering satisfac-
tions of duration conditions as follows.

(i) At least 72 hours of total detection life-
time.
(ii) At least 48 cumulative (not necessarily 
consecutive) hours of having a warm core.
(iii) At least 36 consecutive hours of a warm 
core plus winds greater than 15.5 m s–1.
(iv) The start (last) time of 24 consecutive 
hours of a warm core plus winds is assigned 
to genesis (cyclolysis) time. Location of TC 
genesis should be equatorward of 40°N.

TC positions are counted for each 2.5° × 2.5° grid 
box within the global domain at 6-hour intervals. 
The total count for each grid box is defined as the 
TC density. The density fields are smoothed using a 
9-point moving average weighted by distance from 
the center of the grid box. TC density is used in the 
following regression analysis (see Supplemental Figs. 
S23.2–S23.5).

Experimental settings
We conducted a suite of simulations using FLOR. A 
large number of samples are required 
to compute the probability of occur-
rence of a year with TC frequency 
more than or equal to a specific 
number [P(x)]. A detailed description 
of how we calculated the probability 
for each simulation is given below.

Retrospective seasonal forecasts. For 
each year in the period 1980–2014, 
we used the results of 12-member 
ensemble retrospective seasonal fore-
casts by FLOR (Vecchi et al. 2014; Jia 
et al. 2015). For each ensemble mem-
ber, 12-month duration predictions 
were performed after initializing the 
model to observationally constrained 
conditions. The 12-member initial 
conditions for ocean and sea ice com-
ponents were built through a coupled 
ensemble Kalman filter (EnKF) data 
assimilation system developed for 
CM2.1, whereas those for atmosphere 

and land components were built from a suite of SST-
forced atmosphere–land-only simulations using the 
components in FLOR. Therefore, the predictability 
in these experiments comes entirely from the ocean 
and sea ice, and may be thought of as a lower bound 
on the potential prediction skill of a model, because 
predictability could also arise from atmospheric 
(particularly stratospheric) and land initialization.

We used 12-member ensemble forecasts initial-
ized on 1 July to evaluate model skill in predicting 
TC frequency near Hawaii during the subsequent TC 
season (July–November).

1860/1990-control simulations. We generated 2000-
year control climate simulations using FLOR by 
prescribing radiative forcing and land-use condi-
tions representative of the year 1860. In addition, 
we generated 500-year control climate simulations 
by prescribing conditions representative of the year 
1990. For these experiments, we compute P(x) using 
all simulated years. Results are shown in Fig. 23.2b in 
the main text. To elucidate multicentury variability, 
we compute P(x) for each 100-year period. The error 
bars in Fig. 23.2b show the range of minimum and 
maximum in the variability.

Multidecadal simulations. We conducted 35-member 
ensemble multidecadal simulations using FLOR 
(Supplemental Fig. S23.1). Five- (thirty-) member 
ensemble simulations were conducted from 1861 

Fig S23.1 Interannual variation of global mean SST (°C) simulated by 
the multidecadal experiment from the period 1941–2040. Black line 
shows simulated global mean SST for each ensemble member. Red line 
shows ensemble mean value. Blue arrows denote historical volcanic 
events. The simulated internal variability is out of phase among the 
ensemble members, whereas the ensemble mean shows a significant 
positive trend due to the response of anthropogenic forcing along 
with a few abrupt decreases due to volcanic forcing. For each 20-year 
period, 700 (20 years × 35 ensemble members) samples are obtained 
to compute P(x). 
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(1941) to 2040 by prescribing historical anthropogenic 
forcing and aerosols up to 2005, and future levels 
based on the RCP4.5 scenario from 2006 to 2040. In 
the simulations, historical volcanic radiative forcing 
was also prescribed up to 2005; however, no volcanic 
forcing was prescribed after 2006. These multidecadal 
simulations were not initialized experiments, that is, 
simulated internal variability, such as ENSO, was out 
of phase among the ensemble members and observa-
tions. For each 20-year period from 1941, 700 (= 20 × 
35) samples were available to calculate P(x).

Indices for natural variability
To elucidate the potential influence of natural vari-
ability on the frequency of TCs near Hawaii, we fo-
cused on the El Niño–Southern Oscillation (ENSO), 
Pacific decadal oscillation (PDO; Mantua et al. 1997), 
interdecadal Pacific oscillation (IPO; 
Power et al. 1999; Folland et al. 2002), 
and Atlantic multidecadal oscillation 
(AMO; Delworth and Mann 2000). 
We focused on these indices during 
the boreal summer of July–November 
to compare them with TC frequency 
near Hawaii. In this section, we de-
scribe how to calculate those climate 
indices. Note that we focused mainly 
on decadal time scales for PDO, IPO, 
and AMO, whereas we focused on in-
terannual time scales for ENSO.

ENSO (Niño-3.4 index). We used Niño-
3.4 index to represent ENSO. The 
Niño-3.4 index is obtained from 
the mean SST anomaly in the re-
gion bounded by 5°N and 5°S, and 
between 170°W to 120°W. The SST 
anomaly is calculated by subtracting 
the climatological mean value. For 
the 1860- (1990-) control simulation, 
we used the 2000-yr (500-yr) mean 
for the climatological mean. For the 
multidecadal simulations, we defined 
the climatological mean value for 
each year using a 21-yr moving aver-
age to smooth the nonlinear trend of 
global warming. The Niño-3.4 index 
is standardized after calculating the 
anomaly (i.e., its mean value is zero 
and its standard deviation is one). We 
defined a positive phase of ENSO (i.e., 
El Niño) as years in which the Niño-3.4 
index exceeds one standard deviation. 

Likewise, we defined a negative phase of ENSO (i.e., 
La Niña) years in which the Niño-3.4 index falls below 
minus one standard deviation.

Supplemental Fig. S23.2 shows the observed Niño-
3.4 index as well as the regression of SST and TC 
density onto the Niño-3.4 index. When the Niño-3.4 
index is positive (i.e., an El Niño year), the tropical 
eastern Pacific is warmer than normal. Moreover, 
TC density increases in the eastern Pacific when the 
Niño-3.4 index is positive, leading to an increased TC 
frequency near Hawaii. The Niño-3.4 index during 
the 2014 TC season was 0.5.

Pacific decadal oscillation (PDO index). We calculated 
the PDO index following Mantua et al. (1997). The 
PDO is the leading empirical orthogonal function 
(EOF) of SST anomalies over the North Pacific 

Fig. S23.2. Observed mean Niño-3.4 index for July–November 
(1949–2014). (a) Time series of Niño-3.4 index for the period 1949–
2014 [units: 1σ (one standard deviation)]. (b) Seasonal mean SST 
regressed onto the Niño-3.4 index (units: K σ–1). (c) Seasonal mean 
TC density regressed onto the Niño-3.4 index (units: number σ–1). 
The HadISST1.1 was used for SST, whereas the IBTrACS plus Unisys 
best-track data were used for TC density.
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(20°–70°N, 110°E–100°W) after the global mean SST 
has been removed. The PDO index is the standard-
ized principal component time series. To focus on 
the decadal variation of the PDO, we used a 10-yr 
low-pass filtered index throughout this study. We 
defined a positive (negative) phase of the PDO as 
years in which the filtered PDO index falls below one 
(minus one) standard deviation.

Supplemental Fig. S23.3 shows the observed PDO 
index as well as the regression of SST and TC density 
onto the PDO index. When the PDO index is posi-
tive, the subtropical eastern Pacific (north Pacific) is 
warmer (cooler) than normal. Moreover, TC density 
increases in the eastern Pacific when the PDO index 
is positive, leading to an increase in TC frequency 
near Hawaii. The PDO index during the 2014 TC 
season was –0.7.

Interdecadal Pacif ic oscillation (IPO index). We calcu-
lated the IPO index following Folland et al. (1999, 
2002) and Power et al. (1999). The IPO index is the 
standardized 3rd principal component of the EOF 
for the 13-yr low-pass filtered global SST. The IPO 

manifests as a low-frequency El Niño-like pattern of 
climate variability, whose spatial pattern is similar 
to that of the global warming hiatus seen in recent 
decades as (England et al. 2014). We defined a positive 
(negative) phase of the IPO as years in which the IPO 
index falls below one (minus one) standard deviation.

Supplemental Fig. S23.4 shows the observed IPO 
index as well as the regression of SST and TC density 
onto the IPO index. When the IPO index is positive, 
the subtropical eastern Pacific (north Pacific) is 
warmer (cooler) than normal, which is similar to the 
PDO (Supplemental Fig. S23.3). Moreover, TC density 
increases in the eastern Pacific when the IPO index 
is positive, leading to an increase in TC frequency 
near Hawaii. The IPO index during the 2014 TC 
season was –2.0.

Atlantic multidecadal oscillation (AMO index). We cal-
culated the AMO index following Deser et al. (2010). 
The AMO index is defined as the area-average SST 
anomaly over the North Atlantic (0°–70°N, 90°W–0°) 
minus the global mean SST anomaly. The AMO index 
was standardized after calculating the anomalies. 

To focus on the decadal variation 
of the AMO, we used a 10-yr low-
pass filtered index throughout this 
study. We defined a positive (nega-
tive) phase of the AMO as years in 
which the AMO index falls below 
one (minus one) standard devia-
tion.

Supplemental Fig. S23.5 shows 
the observed AMO index as well as 
the regression of SST and TC den-
sity onto the AMO index. When the 
AMO index is positive, the North 
Atlantic is warmer than normal. 
Unlike other indices, TC den-
sity decreases in the eastern Pacific 
when the AMO index is positive, 
indicating that TC frequency near 
Hawaii should increase when the 
AMO index is negative. The AMO 
index during the 2014 TC season 
was +0.7.

Fig. S23.3. As in Fig. S23.2, but for the PDO index.
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Fig. S23.4. As in Fig. S23.2, but for the IPO index.

62 DECEMBER 2015|



Fig. S23.5. As in Fig. S23.2, but for the AMO index.
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