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FORCING AND NATURAL VARIABILITY ON THE 2014 

HAWAIIAN HURRICANE SEASON 

Hiroyuki Murakami, Gabriel A. Vecchi, Thomas L. Delworth, Karen Paffendorf, Richard Gudgel, 
Liwei Jia, and Fanrong Zeng

Introduction. Three hurricanes approached the Hawai-
ian Islands during the 2014 hurricane season (Fig. 
24.1a), which is the third largest number since 1949 
(black bars in Fig. 24.1b). Previous studies suggest 
that the frequency of tropical cyclones (TCs) around 
Hawaii will increase under global warming (Li et al. 
2010; Murakami et al. 2013). The projected increase is 
primarily associated with a northwestward shifting of 
TC tracks in the open ocean southeast of the islands, 
where climate models robustly predict greater warm-
ing than the other open oceans. Natural variability, 
such as that associated with the El Niño–Southern 
Oscillation (ENSO), also has a significant influence 
on TC activity near Hawaii (Chu and Wang 1997; Jin 
et al. 2014). In fact, moderate El Niño conditions were 
observed during the 2014 hurricane season that might 
have been favorable for TC activity near Hawaii. In 
this study, we use a suite of climate experiments 
to explore whether the unusually large number of 
Hawaiian TCs in 2014 was made more likely by an-
thropogenic forcing or natural variability.

Methodology. We explore a suite of simulations us-
ing the Geophysical Fluid Dynamics Laboratory 
(GFDL) Forecast-oriented Low Ocean Resolution 
model (FLOR; Vecchi et al. 2014; see Supplementary 
Material). Simulated TCs were detected using an auto-
mated tracking algorithm as proposed by Murakami 
et al. (2015; see online supplemental material). For 

the observational dataset, we used “best-track” data 
obtained from the International Best Track Archive 
for Climate Stewardship (IBTrACS; Knapp et al. 2010) 
and the Unisys Corporation website (Unisys 2015) for 
the period 1949–2014. We focus on TCs with tropi-
cal storm strength or stronger. For the observed sea 
surface temperature (SST), we used the Hadley Center 
Global Sea Ice and Sea Surface Temperature dataset 
(HadISST1; Rayner et al. 2003). We define simulated/
observed TCs near Hawaii as those TCs propagating 
within the coastal region of the Hawaiian Islands; that 
is, the zone extending 500 km from the coastline (see 
blue domain in Fig. 24.1a). We performed a prelimi-
nary investigation of the dependence of distance on 
the effect of anthropogenic forcing and natural vari-
ability on TC frequency near Hawaii, which revealed 
that the dependence is small qualitatively.

To assess the ability of FLOR to predict the TCs 
near Hawaii, we first analyzed a retrospective sea-
sonal forecast made using FLOR initialized on 1 July 
for each year of 1980–2014 (Vecchi et al. 2014; Jia et 
al. 2015; see online supplemental material). Figure 
24.2a shows the time series of TC number predicted 
by FLOR, which reasonably predicts the interan-
nual variations of observed TC frequency (r = 0.59). 
Moreover, FLOR predicted marked multidecadal 
variations in the probability of TC occurrence (for 
example, higher during the period 1980–94 relative 
to 1995–2014), which is consistent with the observed 
variability. However, FLOR underestimates TC num-
ber in the abnormal years of 1982, 2009, and 2014, 
although FLOR predicts relatively larger numbers in 
2009 and 2014 compared to the mean of the last two 
decades (1995–2014). The deficiency in predicting the 
abnormal years indicates that there may be another 
forcing that is missing in the experimental setting 
(for example, atmospheric initialization; aerosols). Or 

New climate simulations suggest that the extremely active 2014 Hawaiian hurricane season was 
 made substantially more likely by anthropogenic forcing, but that natural variability of El Niño 

was also partially involved.
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these abnormal events may be unpredictable because 
of random noise emerging in nature.

Hereafter, we will examine the empirical prob-
ability of exceedance for the frequency of TCs near 
Hawaii during July–November as a function of TC 
number using the following equation:

where x is the annual number of TCs near Hawaii. 
For example, P(3) represents the probability of occur-
rence of a year with three or more TCs near Hawaii.

Effect of Anthropogenic Forcing on TCs near Hawaii. 
Here we form a preliminary estimate of the impact 
of anthropogenic forcing on Hawaiian TCs, com-
paring a pair of control climate simulations using 
FLOR, which were run for 2000-yr (500-yr) intervals 
by prescribing radiative forcing and land-use con-
ditions representative of the year 1860 (1990) (see 
online supplemental material). The probability of 

exceedance for seasonal Hawaiian TC frequency in 
the 1990 control experiment compares much more 
reasonably with the observed probability than does 
the 1860 control experiment (Fig. 24.2b), although the 
1990 control experiment still slightly underestimates 
the observed values. The 1860 control experiment 
shows substantially reduced probability relative to 
the 1990 control experiment. The P(2) and P(3) from 
the 1990 control experiment are about 5 and 17 times, 
respectively, larger than those from the 1860 control 
experiment, or a fraction of attributable risk (FAR; 
Jaeger et al. 2008) of 80% and 94%, respectively. These 
experiments suggest that anthropogenic forcing has 
substantially changed the odds of TC seasons like 
2014 near Hawaii relative to natural variability alone.

Effect of Natural Variability on TCs near Hawaii. The 
black bars in Fig. 24.1b reveal substantial interannual 
and decadal variations—including a relatively inac-
tive era for Hawaiian TCs for the decade prior to 2014. 
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Fig. 24.1. Observed TCs near Hawaii and indices of natural variability. (a) TCs in 2014. Three TCs (red: Iselle, 
Julio, and Ana) approached the coastal region of Hawaii (blue). Dots denote TC genesis locations. C1 and C3 
indicate category 1 and 3 TCs by the Saffir–Simpson hurricane wind scale, respectively. (b) Yearly variability 
in the number of TCs near Hawaii during the peak season of Jul–Nov for the period 1949–2014 (black bars, 
number). Colored lines denote climate indices for the PDO (green), AMO (red), IPO (purple), and Niño-3.4 
(blue). Units for the indices are one standard deviation. For details of the climate indices and methods used to 
detect them, see the online supplemental material. (c) Regression of seasonal mean sea surface temperature 
(SST) onto the number of TCs near Hawaii. Units: K number−1. (d) Results of change-point analysis applied 
to TC frequency near Hawaii showing the posterior probability mass function (PMF) for the year of the first 
change point (blue) and second change point (red) under the hypothesis of two change points.
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Figure 24.1c shows the seasonal mean SST regressed 
onto TC frequency near Hawaii, and reveals an El 
Niño-like spatial pattern. This reflects the tendency 
for an increase in Hawaiian TC activity during El 
Niño: the Niño3.4 index (blue line, Supplemental Fig. 
S24.2) is moderately correlated with TC frequency 
(Chu and Wang 1997). Moreover, Fig. 24.1b reveals 

marked multidecadal variations in the TC frequency 
near Hawaii. There appear to be abrupt shifts in Ha-
waiian TC frequency in the mid-1970s and 1990s. We 
applied a change-point analysis developed by Zhao 
and Chu (2010) to the TC frequency time series, which 
indicated that the most likely first (second) change 
point was 1978 (1995) (Fig. 24.1d). The spatial pattern 

Fig. 24.2. Probability for the frequency of TCs near Hawaii between Jul and Nov simulated by a suite of simula-
tions using FLOR. P(2) represents the probability of occurrence of a year with TC number more than or equal to 
near Hawaii. (a) Retrospective forecasts for TC frequency near Hawaii initialized in Jul. The black line indicates 
observed TC frequency, green line indicates the mean forecast value, shading indicates the confidence intervals, 
dots indicate values simulated by one or more ensembles. (b) Results of P(x) from the control simulations and 
observations. Blue bars are probability obtained by observations (1949–2014). Green bars are the results from 
the 1990 control simulation (500 years), whereas red bars are the results from the 1860 control simulation 
(2000 years). Error bars in the control simulations denote the range of minimum and maximum values of P(x), 
computed from each 100-year period. (c) Results of P(2) from the multi-decadal simulation. For each 20-year 
period, P(2) (black line) was calculated from 700 samples. Colored bars show the range of conditional P(2) in-
duced by natural variability. For example, red bars cover P(2|AMO+) and P(2|AMO–), namely, the range of P(2) 
under the conditions between positive AMO and negative AMO phases. Likewise, P(2) under the condition of 
positive and negative phases of PDO (green), ENSO (blue), and IPO (purple) are shown. Orange circles denote 
results of P(2) from the control simulations. The orange error bars show the range of minimum and maximum 
when P(2) is computed for each 100-year period. (d) As (c), but for P(3).
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shown in Fig. 24.1c is also similar to the low-frequency 
variations of the Pacific Decadal Oscillation (PDO; 
Mantua et al. 1997; green line, Supplementary Fig. 
S24.3) or Interdecadal Pacific Oscillation (IPO; 
Power et al. 1999; Folland et al. 2002; purple line, 
Supplementary Fig. S24.4). Both indices changed sign 
around 1997 (Fig. 24.1b), which may contribute to the 
multidecadal variations in TC frequency (Wang et al. 
2010). Moreover, Fig. 24.1c shows marked negative 
SSTs in the tropical Atlantic, indicating reduced TC 
frequency near Hawaii when the tropical Atlantic 
is warmer. A recent study by Kucharski et al. (2011) 
reported that the Atlantic warming in the late twen-
tieth century could have led to a reduction in Pacific 
warming via the Walker circulation. The Atlantic 
multidecadal oscillation (AMO; Delworth and Mann 
2000; red line, Supplementary Fig. S24.5) index also 
changed sign around 1997 (Fig. 24.1b), and this could 
have caused the abrupt shift in TC frequency.

To elucidate the potential influence of the natural 
variability outlined above on TC frequency near 
Hawaii, we conducted 35-member ensemble multi-
decadal simulations (see online supplemental mate-
rial) from 1941 to 2040. For each 20-year period from 
1941, 700 (20 × 35) samples were available to calculate 
P(x). In contrast to the seasonal forecasts, because the 
simulated internal variability is out of phase among 
the ensemble members (even with the observations), 
we can estimate the conditional probability of P(x) 
under any phase of natural variability. In other words, 
we can estimate potential probability under any phase 
of natural variability in a specific range of decades. 
Here, we define a simulated/observed positive (or 
negative) phase of ENSO, PDO, IPO, and AMO as 
these indices exceeding one standard deviation and 
estimate the amplitude of P(x) between the two phas-
es. For details of the climate indices and methods used 
to detect them, see the online supplemental material.

Figures 24.2c and d summarize the results for P(2) 
and P(3). Similar results were obtained for P(1) (figure 
not shown). The black lines show P(2) and P(3) , and re-
veal a gradual increase from 1940 to 2040, indicating 
that global warming generates more TCs near Hawaii, 
which is consistent with the control simulations. The 
colored bars denote the range of conditional prob-
ability induced by natural variability, revealing that 
natural variability has considerable potential to influ-
ence the probability of TC frequency. The amplitude 
of the bars is similar to the amplitude of the global 
warming effect (that is, the difference in orange circles 
in Figs. 24.2c and d), implying that internal variations 
could act to either temporarily mask or substantially 

amplify the impact of anthropogenic forcing on the 
number of TCs near Hawaii.

Discussions and Conclusions. As shown in Fig. 24.1b, the 
observed TC frequency was greater during the period 
1980–94 than 1995–2014. Moreover, the observations 
show positive PDO and IPO indices, as well as a 
negative AMO index between 1980 and 1994, whereas 
these indices reversed sign between 1995 and 2014. 
From Figs. 24.2c and d, it is possible that the earlier 
decades (1981–2000) could have had a higher prob-
ability of TC occurrence than more recent decades 
(2001–20), provided that the PDO, IPO, and AMO 
indices were more favorable for TC activity during 
the previous decades. Therefore, it can be concluded 
that the observed multidecadal difference between 
1980–94 and 1995–2014 was mainly caused by natu-
ral variability. However, the extremely large number 
of TCs during the 2014 hurricane season occurred 
despite the unfavorable IPO (−2.0), AMO (+0.7), and 
PDO (−0.7), and moderate El Niño (+0.5). The FLOR 
suggests that historical global warming could have 
contributed to a substantial increase in probability of 
active Hawaiian TC seasons. The evidence for this can 
be shown by the composites of the years in which the 
phase of natural variability is similar to 2014 case in 
the control experiments. We found that P(1) from the 
1990 control experiment under the condition of nega-
tive IPO, positive AMO, negative PDO, and moderate 
El Niño is about 3.4 times larger than that from the 
1860 control experiment (FAR = 71%). Therefore, it is 
possible that global warming increased the odds of the 
extremely large number of Hawaiian TCs in 2014, in 
combination with the moderately favorable condition 
of El Niño. The ensemble experiments with FLOR 
indicate a continued increasing probability of active 
seasons around Hawaii over the next few decades 
[consistent with Murakami et al. (2013)]—although 
there will be substantial modulation on interannual 
and decadal timescales from internal variability.
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