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ABSTRACT

A new high-resolution Geophysical Fluid Dynamics Laboratory (GFDL) coupled model [the High-

Resolution Forecast-Oriented Low Ocean Resolution (FLOR) model (HiFLOR)] has been developed and

used to investigate potential skill in simulation and prediction of tropical cyclone (TC) activity. HiFLOR

comprises high-resolution (;25-kmmesh) atmosphere and land components and amoremoderate-resolution

(;100-km mesh) sea ice and ocean component. HiFLOR was developed from FLOR by decreasing the

horizontal grid spacing of the atmospheric component from 50 to 25 km, while leaving most of the subgrid-

scale physical parameterizations unchanged. Compared with FLOR, HiFLOR yields a more realistic simu-

lation of the structure, global distribution, and seasonal and interannual variations of TCs, as well as a

comparable simulation of storm-induced cold wakes and TC-genesis modulation induced by the Madden–

Julian oscillation (MJO). Moreover, HiFLOR is able to simulate and predict extremely intense TCs (Saffir–

Simpson hurricane categories 4 and 5) and their interannual variations, which represents the first time a global

coupledmodel has been able to simulate such extremely intense TCs in amulticentury simulation, sea surface

temperature restoring simulations, and retrospective seasonal predictions.

1. Introduction

Recent advances in dynamical modeling and compu-

tational resources have enabled climate simulation, pre-

diction, and projection using high-resolution atmospheric

general circulation models (AGCMs: e.g., Walsh et al.

2015). A number of numerical modeling studies have

reported that increasing resolution in an atmospheric

model leads to improved simulation of intense tropical

cyclones (TCs). For example, Oouchi et al. (2006) and

Murakami et al. (2012) demonstrated a realistic global

distribution of intense TCs in multidecadal simulations

using a 20-km-mesh Meteorological Research Institute

(MRI) AGCM. Zhao et al. (2009) also showed a realistic

simulation of TCs in multidecadal simulations using a

50-km-mesh Geophysical Fluid Dynamics Laboratory

(GFDL)High-ResolutionAtmosphericModel (HiRAM).

Zhao et al. (2010) showed skill in retrospective seasonal

* Supplemental information related to this paper is available at

the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-

0216.s1.

Corresponding author address: Hiroyuki Murakami, NOAA/

GFDL, 201 Forrestal Rd., Princeton, NJ 08540-6649.

E-mail: hir.murakami@gmail.com

9058 JOURNAL OF CL IMATE VOLUME 28

DOI: 10.1175/JCLI-D-15-0216.1

� 2015 American Meteorological Society

http://dx.doi.org/10.1175/JCLI-D-15-0216.s1
http://dx.doi.org/10.1175/JCLI-D-15-0216.s1
mailto:hir.murakami@gmail.com


predictions of TC frequency in a number of basins using

the 50-km version of HiRAM. Chen and Lin (2011, 2013)

conducted retrospective seasonal forecasts for hurricanes

using a 25-km-mesh HiRAM, revealing a remarkable

correlation of 0.96 between observed and simulated TC

counts over the 1991–2010 period.Manganello et al. (2012)

reported realistic simulations of global TC frequency and

intensity with the European Center for Medium-Range

Weather Forecasts (ECMWF) Integrated Forecast System

(IFS) at a 10-km horizontal resolution. Rathmann et al.

(2014) reported that a 25-km-mesh EC-EARTH model

outperformed lower-resolution models in terms of global

TC distribution and the interannual variation of TC gen-

esis frequency. Yamada et al. (2010) conducted future

projections using the 14-km-mesh Nonhydrostatic Icosa-

hedral Atmospheric Model (NICAM), representing the

first time that a nonhydrostatic global atmospheric model

had been used for climate projections. While the atmo-

spheric resolution required for reliable future climate

projections of TCs has not yet been determined, a number

of studies have reported that a 60-km mesh may be a

critical resolution that enables a model to project future

increase in mean TC intensity (Murakami and Sugi 2010;

Walsh et al. 2013). However, 60-km-mesh models still

significantly underestimate storm intensity, especially for

major hurricanes (e.g., Zhao et al. 2009; Murakami et al.

2012). Therefore, such a problem demands horizontal

resolution finer than 60-km mesh for TC climate study.

On the other hand, AGCMs lack physical accuracy at

the air–sea interface, which is known to be crucial for TC

intensity and development (Emanuel 2003; Hasegawa

and Emori 2007; Knutson et al. 2001). Sea surface tem-

perature (SST) generally decreases along TC tracks be-

cause of cold-water wakes induced by wind-induced ocean

mixing (Lloyd and Vecchi 2011), which serves to weaken

TC intensity and suppress subsequent TC genesis (Schade

and Emanuel 1999; Bender and Ginis 2000; Knutson et al.

2001). Because this negative feedback is neglected in

AGCMs, coupled atmosphere–ocean general circulation

models (CGCMs) are preferable for use in sensitivity

studies, predictions, and climate projections of TC activity.

However, because a high-resolution CGCM is still com-

putationally expensive, most state-of-the-art CGCMs

incorporate a 50–200-km-mesh atmosphere component,

which is unable to simulate the most intense TCs. A rela-

tively smaller number of studies (Gualdi et al. 2008; Bell

et al. 2013; Kim et al. 2014) have used CGCMs to explore

the sensitivity of tropical cyclone activity to changes in

greenhouse gases. Therefore, the Intergovernmental Panel

on Climate Change (IPCC) Fifth Assessment Report

(IPCC 2013) relied principally on results from high-

resolution AGCMs (regional and global) rather than

CGCMs for future projections of changes in TC statistics

[see Table 14.SM.4a in IPCC (2013)]. High-resolution

CGCMs have been shown to be potentially useful tools

for the subseasonal-to-seasonal prediction of hurricane

activity (Vitart et al. 2007; Vecchi et al. 2014; Camp et al.

2015; Xiang et al. 2015a,b), though these results have fo-

cused principally on tropical cyclone or hurricane fre-

quency, rather than intense tropical cyclones. Dynamical

(e.g., Knutson et al. 2015) or statistical (e.g., Zhao andHeld

2010; Villarini and Vecchi 2013) refinements are potential

mechanisms to extract intensity information from GCMs

that do not explicitly simulate the most intense hurricanes.

We here focus, however, on a global CGCM that is able to

explicitly simulate intense tropical cyclones.

In this study, we develop a high-resolution CGCM

[the High-Resolution Forecast-Oriented Low Ocean

Resolution (FLOR) model (HiFLOR)] with an atmo-

spheric horizontal grid spacing of approximately 25 km

and oceanic horizontal grid spacing of approximately

100km. This high-resolution CGCM is developed from a

more modest (;50km) high-resolution CGCM (FLOR;

Vecchi et al. 2014) by reducing the horizontal grid spacing

of the atmosphere and land components to approximately

25km. Themain objective of this study is to elucidate how

much influence the horizontal resolution of the atmo-

spheric component exerts on the simulation and seasonal

prediction of TCs, with a particular focus on the most in-

tense TCs (Saffir–Simpson hurricane categories 4 and 5).

The remainder of this paper is organized as follows.

Section 2 describes the models, experimental design, and

data used in this study. Section 3 assesses the performance

of simulations and predictions by the high-resolution

CGCM compared with the moderate-resolution CGCM.

Finally, section 4 provides a summary of the results.

2. Methods

a. Models and simulation settings

The models used in this study comprise the GFDL

FLOR (Vecchi et al. 2014; Jia et al. 2015) and HiFLOR.

FLOR comprises a 50-km-mesh atmosphere and land

components and 100-km-mesh sea ice and ocean com-

ponents. The atmosphere and land components of

FLOR are taken from the Coupled Model, version 2.5

(CM2.5; Delworth et al. 2012), developed at GFDL,

whereas the ocean and sea ice components are based on

the GFDL Coupled Model, version 2.1 (CM2.1; Delworth

et al. 2006; Wittenberg et al. 2006; Gnanadesikan et al.

2006). CM2.5 substantially improves near-surface and at-

mospheric climate simulation relative to CM2.1 (Delworth

et al.2012;Doi et al. 2012;Delworth andZeng 2012) aswell

as the simulation of tropical cyclones (Kimet al. 2014). The

details of FLOR and its simulation performance are

documented in Vecchi et al. (2014), Jia et al. (2015), and
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Krishnamurthy et al. (2015). FLOR has been used to un-

derstand the change, variability, and predictability of

global and regional climate and extremes (Vecchi et al.

2014; Msadek et al. 2014; Winton et al. 2014; Jia et al.

2015; Yang et al. 2015; Krishnamurthy et al. 2015,

manuscript submitted to J. Climate; Delworth et al.

2015; Zhang and Delworth 2015); real-time seasonal

predictions with FLOR aremade everymonth through the

North American Multimodel Ensemble (NMME) for

seasonal prediction; Kirtman et al. 2014).

HiFLOR was developed from FLOR by reducing the

horizontal grid spacing of the cubed sphere (Putman and

Lin 2007) atmosphere and land components to a 25-km

mesh (Chen and Lin 2011, 2013); physical processes and

the ocean component were inherited from FLOR with

only minor changes to the dynamical core and physical

parameterizations. In increasing the dynamical core at-

mospheric resolution, we halved the dynamical time

step of the model but kept the physics time step (time

step of the convection, cloud, and radiation schemes in

the model) the same as in FLOR. Among the adjust-

ments, HiFLOR applies a reduction in ocean roughness

under intense wind speeds, such as in TCs (Moon et al.

2004), as implemented in Chen and Lin (2013), which is

primarily relevant to the simulation of intense TCs that

are not present in the FLOR model. However, we have

performed a preliminary investigation of dependency of

this parameterization on TC intensity, revealing that the

effect is small for HiFLOR.

We generate 300-yr control climate simulations using

both FLOR and HiFLOR by prescribing radiative forcing

and land-use conditions representative of the year 1990.

The fixed forcing agents for the control simulations are

atmospheric CO2, CH4, N2O, halons, tropospheric and

stratospheric O3, anthropogenic tropospheric sulfates,

black and organic carbon, and solar irradiance. The control

simulations are so-called free runs, in which flux adjust-

ments (Magnusson et al. 2013; Vecchi et al. 2014) are not

applied. Therefore, the FLOR and HiFLOR simulations

have biases in their SST climatology; as noted in Vecchi

et al. (2014), these SST biases can be a large contributor to

biases in the TC climatology and interannual variability.

Because the control simulations by FLOR and

HiFLOR are free CGCM runs, their simulated year-by-

year TC variations will not be in phase with those in ob-

servations. Here, we conducted additional sea surface

salinity (SSS) and SST restoring ensemble experiments

over 1971–2012, in which the simulated SST is restored to

interannually varying observations. The restoring exper-

iments, by bringing the model SST into closer alignment

with that observed, should have their climate variations

phased with those observed. The simulated SSS was re-

stored to the monthly climatology from theWorld Ocean

Atlas 2005 (available online at https://www.nodc.noaa.

gov/OC5/WOA05/pr_woa05.html, Antonov et al. 2006),

while SST was restored to the interannually varying

monthly mean value derived from theMet Office Hadley

Centre Sea Ice and SST dataset (HadISST1.1, available

online at http://www.metoffice.gov.uk/hadobs/hadisst/;

Rayner et al. 2003). To test the sensitivity of the restoring

time scale, the restoring experiments are performed with

either a 5- or 10-day restoring time scale with three dif-

ferent initial conditions. The difference in TC simulation

between 5- and 10-day restoring time scales was small for

both FLOR and HiFLOR (figure not shown), so we treat

all six members as a single population from each model,

thereby yielding six ensemble simulations each for FLOR

and HiFLOR.

To provide a preliminary assessment of the pre-

dictability of intense TCs in HiFLOR, we conducted a

pair of 36-member ensemble retrospective seasonal

forecasts initialized on 1 July 1997 and 1998. Following

Vecchi et al. (2014), 12-month-duration predictions are

performed after initializing the climate model to ob-

servationally constrained conditions. The 36-member

initial conditions for ocean and sea ice components were

taken from a 12-member coupled ensemble Kalman

filter (EnKF) data assimilation system with CM2.1.

Meanwhile, initial conditions for atmosphere and land

components were taken from three arbitrary years in the

1990 control simulations with HiFLOR. Therefore, the

predictability in these experiments comes entirely from

the ocean and sea ice and may be thought of as a lower

bound on the potential prediction skill of a model, because

predictability could also arise from atmospheric (particu-

larly stratospheric) and land initialization. Combining the

12 ocean–sea ice initial conditions with the three land–

atmosphere initial conditions yields 36 ensemblemembers.

b. Observational datasets

The observed TC best-track data were obtained from

the International Best Track Archive for Climate

Stewardship (IBTrACS; Knapp et al. 2010) and used to

evaluate the TC simulations in the control and re-

storing experiments, and seasonal predictions. The

dataset, which consists of best-track data compiled by

the National Hurricane Center (NHC) and the Joint

Typhoon Warning Center (JTWC), contains historical

TC information regarding the locations of the centers

of cyclones, cyclone intensities (maximum 1-min sur-

face wind speeds), and sea level pressures at 6-hourly

intervals. We only used TCs with tropical storm

strength or stronger [i.e., TCs possessing 1-min sus-

tained surface winds of 35 kt (1 kt ’ 0.51m s21) or

greater] during the period 1965–2013. To evaluate

simulated mean SSTs, precipitation, and large-scale
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atmospheric variables (section 3a), we use HadISST1.1

for the period 1979–2014, the Climate Prediction

Center (CPC) Merged Analysis of Precipitation

(CMAP; Xie andArkin 1997) for the period 1979–2013,

and the Japanese 55-year Reanalysis Project (JRA-55;

Kobayashi et al. 2015) for the period 1979–2014. To

compare simulated cold wakes induced by TCs with

observations (section 3c), we used the high-resolution

SST analysis product of the National Oceanic and At-

mospheric Administration (NOAA) 1/48 daily Opti-

mum Interpolation (OI) Sea Surface Temperature

analysis (OISST, version 2; Reynolds et al. 2007) for

the period 1982–2012. For evaluation of simulated in-

traseasonal variations (section 3f), we used daily out-

going longwave radiation (OLR) data from the

Advanced Very High Resolution Radiometer

(AVHRR; Liebmann and Smith 1996) and upper-

(200 hPa) and lower-tropospheric (850 hPa) zonal

winds from the National Centers for Environmental

Prediction–National Center for Atmospheric Research

(NCEP–NCAR) reanalysis (Kalnay et al. 1996) for the

period 1979–2005.

c. Detection algorithm for tropical cyclones

Model-generated TCs were detected directly from

6-hourly output using the following tracking scheme, in

which sea level pressure (SLP) and the temperature

anomaly ta averaged between 300 and 500hPa are mainly

used.

1) Local minima in a smoothed SLP field are detected.

The location of the center is fine-tuned by fitting a

biquadratic to the SLP field and placing the center at

its minimum.

2) Closed contours of some specified pressure interval

dp (here 2 hPa) are found about each center. TheNth

contour is identified as the contiguous region sur-

rounding a low of central pressure P, with pressures

less than dp 3 N 1 P, as found by a ‘‘flood fill’’

algorithm. Hence, the contours need not be circular;

however, there is a maximum distance of 3000km

that the algorithm will search away from the candi-

date low center.

3) If the above closed contours are found, the low is

counted as a storm center at that time. The tracker

then tries to find as many closed contours about that

low as it can find without going too far from the low

center or running into contours claimed by another

low. Themaximum 10-mwind inside the set of closed

contours is considered to be the maximum wind

speed for the storm at that time.

4) Warm cores are found through a process similar to

the above: closed 2K contours for HiFLOR (1K for

FLOR) are sought out about the maximum ta
within a storm’s identified contours, not more than

18 apart from the low center. This contour must

have a radius less than 38 in distance. If no such core

is found, the center is not rejected but is simply

marked as not being a warm core low.

FIG. 1. Simulated biases in climatological mean SST (K) relative to HadISST1.1 during all seasons for (a) FLOR and (b) HiFLOR.

(c) Difference in simulatedmean SST between the two control simulationsHiFLOR and FLOR. (d),(e) As in (a),(b), but for precipitation

(mmday21) relative to CMAP. (f) As in (c), but for precipitation.
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5) Storm centers are connected into a track by taking a

low center at time T 2 dt, extrapolating its motion

forward dt, and then looking for storms within

750 km. Deeper lows get first choice of track.

6) Finally, TCs are selected by considering duration

conditions of

(i) at least 72 h of total detection lifetime,

(ii) at least 48 cumulative (not necessarily consecu-

tive) hours of having a warm core,

(iii) at least 36 consecutive hours of a warm core plus

winds greater than 17.5m s21, and

(iv) the start (last) time of 24 consecutive hours of a

warm core plus winds is assigned to genesis

(cyclolysis) time. (Location of TC genesis

should be equatorward of 408N and 408S.)

As a sensitivity test, we also applied different tracking

schemes from Zhao et al. (2009) and Murakami et al.

(2012). Although similar results were obtained using

these schemes, we found that the tracking scheme of

Zhao et al. (2009) tends to generate multiple TC

genesis events for a single TC when it is applied to

HiFLOR. Although further investigation is required

to address the reason for the multiple TC counts, the

tracking scheme of Zhao et al. (2009) may be opti-

mized for the lower resolution of 60-km mesh

or coarser. The new tracking scheme proposed in

this study strictly prevents multiple TC counts for a

single TC regardless of resolution by incorporating the

process of finding TC candidates using the flood fill

algorithm.

TC positions are counted for each 2.58 3 2.58 grid box

within the global domain at 6-h intervals. The total count

for each grid box is defined as the frequency of occur-

rence of TCs (TCF). The frequency fields are smoothed

using a 9-point moving average weighted by distance

from the center of the grid box. The first detected po-

sition is defined as the location of TC genesis, and the

TC genesis frequency (TGF) at each grid box is counted

similarly to TCF.

The analyses considered total global (GL) results and

results for seven ocean basins: the north Indian Ocean

(NIO), western North Pacific (WNP), eastern North

Pacific (ENP), North Atlantic (NAT), south Indian

Ocean (SIO), and South Pacific Ocean (SPO) (see Fig. 3

for regional boundaries).

3. Results

a. Climate mean state and variability

Figures 1a and 1b compare simulated biases (relative

to HadISST1.1) of climatological mean SST for 300-yr

simulations of FLOR and HiFLOR. Figure 1c shows the

difference between HiFLOR and FLOR. Simulated

biases of FLOR are also documented in Vecchi et al.

(2014). Overall, the spatial patterns of SST biases in

HiFLOR are similar to those in FLOR: both models

FIG. 2. Scatterplot of pattern correlation between HiFLOR control run (300 yr) and observations (y axis) vs

FLOR control run (300 yr) and observation (x axis) for (a) seasonal mean climatology and (c) standard deviation

for tropics (308S–308N). Variables evaluated are SST; precipitation (p); SLP; relative humidity at 600 hPa (RH600);

vertical wind shear between 200 and 850 hPa (Wshear); geopotential height at 500 hPa (F500); zonal and meridional

velocities at 925 (U925 and V925), 850 (U850 and V850), and 200 hPa (U200 and V200); and TCF. Different colors

indicate different seasons. Each symbol represents a particular variable. HadISST1.1, CMAP, JRA-55, and

IBTrACS were used for the observations.
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show substantial cold biases in the NAT and WNP,

although HiFLOR shows slightly larger cold biases in

the tropics and midlatitudes in the Southern Hemi-

sphere. However, HiFLOR improves warm bias in the

ENP and the eastern tropical Atlantic. The models

also share similar bias patterns in the mean pre-

cipitation field (Figs. 1d–f), although the amplitude of

the biases is slightly reduced in HiFLOR relative to

FLOR, especially in the central Pacific (108S–208N,

1608E–1408W). Overall, the climatological means of

SST and precipitation in HiFLOR and FLOR are rel-

atively comparable.

Figure 2 shows the scatterplot of pattern correlation of

seasonal mean climate and standard deviation between

observations and control simulations for HiFLOR

versus FLOR. Similar plots are reported in Jia et al.

(2015) for the comparisons between FLOR and CM2.1

as well as FLOR and CM2.5. A correlation coefficient

above the diagonal line indicates that HiFLOR

has higher correlation skill than FLOR. As seen in

Figs. 2a,b, the correlation skill is higher in HiFLOR than

FLOR for most of the variables and seasons, both in

mean climate and standard deviation, indicating that

increasing atmosphere and land resolution improves

FIG. 3. Global distribution of TC tracks during all seasons for 300-yr control simulation by

(a) FLOR, (b) HiFLOR, and (c) observations from 1979 to 2012. The numbers for each basin

show the annual mean number of TCs. TC tracks are colored according to the intensities of the

TCs as categorized by the Saffir–Simpson hurricane wind scale [e.g., tropical depression (TD),

tropical storm (TS), and hurricane categories 1 through 5 (C1–C5)].
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the representation of diverse features of the mean cli-

mate and its temporal variability, which is consistent

with previous studies (Jung et al. 2012; Kinter et al. 2013;

Jia et al. 2015).

b. Tropical cyclone distributions

Fig. 3 compares observed and simulated distribu-

tions of TC tracks during all seasons. The annual mean

TC number for each basin is also shown in Fig. 3.

Compared with observations (Fig. 3c), HiFLOR

(Fig. 3b) reproduces extremely intense TCs of hurricane

categories 4 and 5 (C4 and C5, respectively) more

realistically than FLOR (Fig. 3a). For example,

HiFLOR simulates concentrated C5 storms in the

Philippine Sea as seen in observations. Although FLOR

also captures the concentrated location of intense

TCs, FLOR critically underestimates TC intensity be-

cause of low horizontal resolution: simulated maxi-

mum TC intensity around the Philippine Sea is at most

category 2. The simulated annual mean TC number in

HiFLOR is improved in the NAT (SIO), in which

FLOR critically underestimates (overestimates) TC

number. However, the simulated TC numbers in the

WNP and ENP by FLOR are much closer to observa-

tions than HiFLOR.

Figures 4a and 4b compare the spatial distributions of

model biases in TCF for the control simulations.

Figure 4c shows difference between the two models.

Both models generally show similarities in their biases:

overestimates in the WNP, central Pacific, and SIO; and

underestimates in the eastern part of the ENP region

FIG. 4. Model bias in TC frequency of occurrence in the 300-yr

control experiments by (a) FLOR, (b) HiFLOR, and (d) restoring

experiments by HiFLOR (1971–2012; mean of 6 members) relative

to IBTrACS. (c) Difference between the two control simulations

HiFLOR and FLOR. The TC frequency of occurrence is defined as

a total count of TC position in each analyzed 2.58 3 2.58 grid cell

with 9-point weighting smoothing within the global domain in 6-h

intervals. The biases circled by dashed lines are above the 99%

significance level estimated by a bootstrap significance test

(Murakami et al. 2013).

FIG. 5. Comparisons of TC intensity. (a) Fractional ratio of an-

nual mean TC number for the lifetime maximum surface wind

speed (m s21) simulated using FLOR (300 yr; blue) and HiFLOR

(300 yr; red), also including observations (1979–2012; green).

(b) MWS (m s21) vs MSLP (hPa) for TCs using all 6-hourly data.

Probability density functions (%) for MWS and MSLP are shown

in the histograms. The red (blue) curve is the regression line for

HiFLOR (FLOR). The black curve in (b) is the observationally

based regression line proposed by Atkinson and Holiday (1977),

based on observed data.
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and NAT. Note that HiFLOR shows a larger positive

bias in the WNP than FLOR, as indicated by the over-

estimation of TC genesis number (Fig. 3). However,

HiFLOR reduces the biases in the NIO, SIO, SPO,

central Pacific, and NAT, leading to improved simulation

of the global distribution of TCs by HiFLOR (Fig. 2).

This result indicates that the high-resolution model is

desirable for accurate simulations of the TC spatial

distributions, which is also consistent with previous

studies (Murakami and Sugi 2010; Manganello et al.

2012; Walsh et al. 2013; Murakami et al. 2014a).

Because the SST biases are much smaller in the re-

storing experiments, these experiments allow us to as-

sess the extent to which simulated biases in the control

CGCM simulations arise from biases in SST as opposed

to the biases in the atmosphere component. Figure 4d

shows model biases in TCF in the restoring experiments

in HiFLOR. Compared to those in the control simula-

tion (Fig. 4b), the restoring experiments reduce the

biases in the central Pacific, SPO, and NAT, indicating

that these biases in climatological TC simulation from

the control simulation are substantial because of the SST

biases. On the other hand, the overestimation of TCF in

the Indian Ocean remains, and that in the WNP be-

comes larger, indicating these biases may be intrinsic to

the atmospheric component.

c. Tropical cyclone intensity and composite structure

As indicated in section 3b, HiFLOR can simulate in-

tense TCs of C4 and C5. Figure 5 shows more de-

tailed comparisons of TC intensity between FLOR and

HiFLOR, revealing that HiFLOR improves lifetime

FIG. 6. Composite structure for TCs.Mean 10-m surface wind velocity (m s21; vectors), precipitation (mmday21; shading), and sea level

pressure (hPa; contours) for the control simulations by (a) FLOR and (b)HiFLOR. (c) Azimuthal mean tangential wind speed (m s21) for

FLOR (blue) and HiFLOR (red) as a function of distance from the storm center (km). Composite daily mean SST anomaly 2 days after

passages of storms (.34 kt) relative to the average over days212 to22 simulated by (d) FLOR, (e) HiFLOR, and from (f) observations

(SST from AVHRR; TC tracks from IBTrACS). The values listed in the panels are sample size (N), minimum SLP, maximum pre-

cipitation (P), maximum tangential wind speed (TW) in (a),(b) and N and minimum SST anomaly (MIN) in (d)–(f). Composites for

(a)–(c) are for the storms at their lifetime maximum intensity in the Northern Hemisphere, whereas those for (d)–(f) are for the storms

with normalized V/f , 1 (i.e., slow moving or high latitude) in all ocean basins.
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maximum intensity (Fig. 5a) significantly relative to

FLOR. Although HiFLOR still underestimates C5

TCs (i.e., .69m s21 wind) compared with observa-

tions, the probability distribution in HiFLOR is closer

to observations than in FLOR. Note that HiFLOR

simulates more intense TCs than the 25-km-mesh

HiRAM [see Fig. 11 in Chen and Lin (2013)]. HiRAM

(Zhao et al. 2009; Chen and Lin 2011, 2013) was de-

veloped based on the GFDL Atmosphere Model

(AM2; Anderson et al. 2004), which is also the atmo-

spheric component of CM2.1, FLOR, and HiFLOR.

However, HiRAM replaced the dynamical core and

deep convection scheme from AM2 (Zhao et al. 2009);

thus, HiRAM is mostly independent from the atmo-

spheric component of HiFLOR. The simulation dif-

ferences between HiRAM and HiFLOR arise from the

differences in the dynamical and physical schemes as

well as in atmosphere–ocean coupling.

Figure S1 in the supplemental material also compares

simulated TC intensity between the control simulation

and the restoring experiments. Although the difference

between the control simulation and restore experiments

in FLOR (blue lines) is not clear, the restoring experi-

ments in HiFLOR (red line with triangles) significantly

increase TC intensity relative to the control simulation

(red line with circles). An additional experiment, for

which the simulated SSS and SST are restored to the

simulated climatological mean of the HiFLOR control

simulation at a 5-day time scale (green line with

triangles), reveals a similar TC intensity to that of the

control simulation. The above results indicate that the

more intense TCs in the restoring experiments relative

to the control simulation are connected to differences in

the mean state rather than to the nudging itself.

The simulated relationship between maximum wind

speed (MWS) and minimum SLP (MSLP) using all the

6-h TC data is also investigated in Fig. 5b. Also shown in

the figure is Atkinson and Holiday’s (1977) nonlinear

regression curve derived from observations in the WNP

(black curve). FLOR underestimates MWS relative to

MSLP for intense TCs (e.g., MWS at MSLP around

950 hPa). The MWS–MSLP relationship by HiFLOR is

closer to observations, indicating that the simulated TC

structure by HiFLOR is more reasonable than that

simulated by FLOR.

Figures 6a–c compare composite TC structure be-

tween FLOR and HiFLOR simulated through the

300-yr control simulations. Composite structures are

made for the TCs at their lifetime maximum intensity in

the Northern Hemisphere. HiFLOR simulates more

intense SLP minima and more intense wind speeds and

precipitation than in FLOR. Both models show that

the maximum tangential wind speed is located less than

100 km from the storm center (Fig. 6c), which is con-

sistent with observations (Frank 1984; Murakami

et al. 2008).

Figures 6d–f compare composite structures of SST

cooling in the wake of TCs. Following Lloyd and Vecchi

(2011), we used daily mean SST anomaly relative to

monthly climatology. SST anomalies at 2 days after

storm passages relative to the average over 2–12 days

before the storm passages were used for the input data.

As discussed in Lloyd andVecchi (2011), surface cooling

depends on translation speed and latitude. Thus, we

consider a nondimensional parameter V/f, where V is

translation speed (meters per second) and f is the

Coriolis parameter (inverse seconds). The parameter

V/f is normalized by 100 km so that V/f 5 1, which di-

vides all storms equally. Lloyd and Vecchi (2011) found

that surface cooling is larger inV/f, 1 (i.e., slowmoving

or high latitude) storms than in V/f. 1 (i.e., fast moving

or low latitude) storms. Thus, composites are made for

all storms (.34kt) with V/f , 1 in this study.

Both FLOR (Fig. 6d) and HiFLOR (Fig. 6e) recover

the structure of the observed cold SST wake (Fig. 6f).

The cold wake is similar between HiFLOR and FLOR,

despite the stronger wind speeds in HiFLOR (e.g.,

Fig. 5). This may be because most of the samples used

for the composites are from relatively weaker phases of

the storm lifetime. When composites are made for each

TC intensity category, both FLOR and HiFLOR simu-

late larger surface cooling as TC intensity increases

FIG. 7. Composite mean SST anomaly (K) for each day before

and after storm passage. SST anomaly is averaged over the domain

of 100 km from the TC center relative to the average over days212

to 22 (i.e., center of the domain for average is fixed at the storm

center at day 0). Day 0 is when the storm reaches the track position,

and positive (negative) days indicate the day after (before) the

storm has passed. Composites aremade for all storms (.34 kt) with

normalized V/f , 1 (i.e., slow moving or high latitude) in all

ocean basins.
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(Fig. S2 in the supplementalmaterial). Lloyd andVecchi

(2011) reported that the observed cold wake is non-

monotonic: stronger cyclones produce more cooling up

to hurricane category 2 (C2) but less or approximately

equal cooling for C3–C5 TCs. Although Lloyd et al.

(2011) reported that this nonmonotonicity is well re-

produced by the GFDL Hurricane Forecast Model

(GHM; Kurihara et al. 1998; Bender et al. 2007),

HiFLOR could not reproduce this nonmonotonicity

(i.e., the HiFLOR cold wake is stronger in C3–C5 TCs

than in C2 TCs). The reason for this discrepancy is under

investigation.

Figure 7 shows the composite mean SST anomaly for

each day before and after storm passage, indicating that

simulated cold wake is generally restored to a steady

condition 30 days after storm passage, which is consis-

tent with observations (black line). Figure 7 also in-

dicates that the observed SST does not return to the

precyclone condition: SST anomaly remains 20.2K at

30 days after storm passage, which is consistent with

the previous study (Lloyd and Vecchi 2011). This irre-

versible surface cooling is also well simulated by both

models. Figure S3 in the supplemental material shows

the SST anomaly for each TC intensity category. Both

FLOR and HiFLOR simulate the observed recovery

time span for each intensity category; however, the

models simulate larger surface cooling as TC intensity

increases, which is inconsistent with observations.

FIG. 8. Seasonal mean variation in TC genesis number (mean TC number per month) according to observations

(1979–2012; gray bars) and simulation results by FLOR (300 yr; blue lines) and HiFLOR (300 yr; red lines) for the

(a) NIO, (b) WNP, (c) ENP, (d) NAT, (e) SIO, and (f) SPO.
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d. Seasonal variations

Figure 8 compares seasonal variation of TC genesis

frequency between FLOR and HiFLOR. Although

simulated biases in both models are similar to those for

CM2.5, as shown in Kim et al. (2014), HiFLOR

simulates a more reasonable seasonal cycle of TC gen-

esis frequency. For example, the peak month of TC

genesis frequency is improved in the WNP and ENP

compared with FLOR. Over the NIO (Fig. 8a), FLOR

underestimates (overestimates) TC in the premonsoon

(postmonsoon) season, whereas HiFLOR improves

these biases. Although the simulated annual mean TC

number in the WNP appears to be better in FLOR than

in HiFLOR (Fig. 2), FLOR underestimates TC number

during July–September, whereas HiFLOR simulates

reasonable frequency in August and September.

Simulated seasonal variations of TC genesis frequency

in the Southern Hemisphere are mostly identical be-

tween themodels. The above improvements inHiFLOR

relative to FLOR (or CM2.5) are consistent with the

previous work of Murakami and Sugi (2010), who noted

that increasing horizontal resolution leads to im-

proved seasonal variation of TC frequency for most

ocean basins.

e. Interannual variation

El Niño–Southern Oscillation (ENSO) is one of the

primary drivers of interannual variations in TC activity

(Lander 1994; Chen et al. 1998; Wang and Chan 2002;

Camargo and Sobel 2005), and a fundamental source of

interannual TC predictability (Vecchi et al. 2014).

Figure 9 compares simulated composite anomalies of

FIG. 9. Composites of anomaly of TC frequency of occurrence (0.1 3 TC number per year) for (a)–(d) El Niño
years and (e)–(h) La Niña years during August–October yielded by (a),(e) observations (1979–2012); (b),(f) FLOR

control simulation (300 yr); (c),(g) HiFLOR control simulation (300 yr); and (d),(h) HiFLOR restoring experiment

(1971–2012; mean of 6 members). The anomalies encompassed by dashed black lines are above the 90% significance

level estimated by a bootstrap significance test (Murakami et al. 2013).

9068 JOURNAL OF CL IMATE VOLUME 28



TCF for each warm (El Niño) and cold (La Niña) phase of
ENSO during August–October (ASO). Here, we com-

puted SST averaged over the Niño-3 region (58S–58N,

908–1508W) and Niño-4 region (58S–58N, 1608E–1508W)

for each year, and the anomaly is computed by subtracting

the climatological mean value. El Niño (La Niña) years
correspond to years in which the Niño-3 or Niño-4 SST

anomalies exceed one (minus one) standard deviation.

As reported in Wang and Chan (2002), the observa-

tions (Figs. 9a,e) reveal marked southeast- (108–258N,

1308–1508E) to-northwest (208–308N, 1158–1308E)
contrast in TCF in the WNP. Overall, both FLOR

(Figs. 9b,f) and HiFLOR (Figs. 9c,g) faithfully re-

produce the contrasting features. However, during El

Niño (La Niña) years, the simulated peak of positive

(negative) anomalies in FLOR extends farther east of

the date line in the Pacific relative to observations.

The simulated location of the peak in positive anom-

aly in the WNP during El Niño years is also closer to

observations in HiFLOR (Fig. 9c) than in FLOR

FIG. 10. (a) Interannual variations of annual TC genesis number in the North Atlantic ac-

cording to observations and results of ensemble SST-restored experiments with HiFLOR and

FLOR (1979–2012). The red (blue) line represents the mean of six ensemble experiments by

HiFLOR (FLOR). Shading indicates the range of the minimum and maximum among the six

ensemble members. (b),(c) As in (a), but for TCs with hurricane intensity (.64 kt) and hur-

ricanes of categories 4 and 5 intensity (.114 kt), respectively. Dashed lines denote linear trend

by the Poisson regression. Only trends with statistical significance at 95% are shown [the

Student’s t test and modified Mann–Kendall test proposed by Hamed and Rao (1998)].
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(Fig. 9b). In addition, during El Niño years,

the negative anomaly of TCF in the ENP is more

pronounced in FLOR than in HiFLOR. The above

discrepancies between FLOR and observations

are also documented in Vecchi et al. (2014) and

Krishnamurthy et al. (2015, manuscript submitted

to J. Climate). They attribute those inconsistencies to a

stronger ENSO in FLOR than observed. Indeed, the

standard deviation of the Niño-3.4 index is 1.5, 1.0, and

0.8K in FLOR, HiFLOR, and observations, re-

spectively, revealing that the biases in ENSO amplitude

are reduced in HiFLOR.

During La Niña years, both models show positive

anomalies in the ENP (Figs. 9f,g), whereas observations

show negative anomalies (Fig. 9e). Krishnamurthy et al.

(2015, manuscript submitted to J. Climate) reported

that in FLOR La Niña reduces the number of days with

strong vertical wind shear, and the location of the re-

duction is collocated with the main TC genesis region

in the ENP, leading to an opposite relation between La

Niña and the TCF anomaly in FLOR compared to

observations. Although the sign of the anomaly is dif-

ferent from observations, the bias of the positive

anomaly in the ENP during La Niña years is reduced

in HiFLOR.

Figures 9d and 9h show composite anomalies of TCF

for each phase of ENSO simulated by the restoring

experiments using HiFLOR. Compared to the control

simulation (Figs. 9c,g), the restoring experiments sub-

stantially improve the spatial patterns. The restoring

experiments simulate clear peaks of anomalies in the

WNP, which are closer to observations than for the

control experiment, although the restoring experi-

ments underestimate the negative anomaly in the

ENP during El Niño years. Moreover, the restor-

ing experiments reproduce the observed negative

anomaly during La Niña years in the ENP (Fig. 9h),

whereas the control simulation fails to simulate the

negative anomaly (Fig. 9g). Vecchi et al. (2014) and

Krishnamurthy et al. (2015, manuscript submitted to

J. Climate) also reported similar improvements using

the flux-adjusted version of FLOR, in which the

model’s momentum, enthalpy, and freshwater fluxes

from atmosphere to ocean are adjusted to bring the

model’s long-term climatology of SST and surface wind

stress closer to observations. They concluded that this

bias could be corrected by simulating the correct lo-

cation of the reduction in vertical wind shear in the

ENP during La Niña years, which is related to the

strength of ENSO.

Figure 10a compares the interannual variation of the

TC genesis number in the NAT between FLOR (blue)

and HiFLOR (red) through the restoring experiments.

HiFLOR simulates the observed interannual varia-

tions as well as the long-term linear trend better than

FLOR. These results are consistent with previous

studies of Murakami and Sugi (2010), Manganello et al.

(2012), Strachan et al. (2013), and Rathmann et al.

(2014), who noted that increasing horizontal resolution

yields higher skills in simulating observed interannual

variation of TC frequency.

Table 1 summarizes rank correlations between sim-

ulations and observations. Overall, HiFLOR out-

performs FLOR for both all storms and hurricanes

(maximum winds .64 kt ), except for the NIO and

WNP. Significant improvements can be seen in the

variation of hurricanes (Fig. 10b): HiFLOR reproduces

the observed interannual variation and trend of hurri-

cane count, whereas FLOR does not skillfully re-

produce them as HiFLOR. HiFLOR yields higher

correlations for hurricanes than those for all TCs in the

ENP, NAT, and SIO (Table 1). A number of previous

studies have shown similarly high correlations with

observed TC numbers in the NAT, using similar ex-

perimental settings (e.g., LaRow et al. 2008; Zhao et al.

2009; Murakami and Wang 2010; Strachan et al. 2013).

Specifically, Knutson et al. (2008) showed a high cor-

relation of simulated and observed hurricane counts in

the NAT using a regional model with restoring of both

the SST and large-scale fields toward observations.

However, the present study with HiFLOR is the first to

show such high correlations for C4 and C5 hurricanes

with a global coupled model (Fig. 10c and Table 1).

These results highlight potential predictability of

TABLE 1. Rank correlation coefficients between the observed

and simulated interannual variability of TC genesis number in the

SST-restored experiments for each basin for all TCs, TCs of hur-

ricane intensity with maximumwinds.64 kt, and TCs of hurricane

categories 4 and 5 (.114 kt). The 6-member SST-restored en-

semble experiments are conducted using 5- and 10-day restoring

time scales each for HiFLOR and FLOR. Statistical significance is

indicated according to the level of significance: 99%, 95%, and

90%.

Model NIO WNP ENP NAT SIO SPO

All TCs

HiFLOR 20.27a 10.35b 10.49c 10.68c 10.38b 10.31b

FLOR 10.01 10.55c 10.41c 10.59c 10.02 10.22

Hurricanes (.64 kt)

HiFLOR 10.04 10.17 10.51c 10.77c 10.51c 10.23

FLOR 10.01 10.55c 10.25 10.68c 10.10 10.01

Categories 4 and 5 (.114 kt)

HiFLOR 10.38b 10.24 10.31b 10.64c 10.32b 10.18

FLOR — — — — — —

a Statistically significant at the 90% level.
b Statistically significant at the 95% level.
c Statistically significant at the 99% level.
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extremely intense TCs if the SSTs can be predicted

accurately.

f. Intraseasonal variations

Intraseasonal variability in the atmosphere–ocean

coupled system plays an important role in modulat-

ing TC genesis and represents a potential source of

TC predictability on greater-than-weekly time scales

(e.g., Xiang et al. 2015a,b). Maloney and Hartmann

(2000) reported that hurricanes in the Gulf of Mexico

and western Caribbean are strongly modulated by

wind anomalies induced by the Madden–Julian oscilla-

tion (MJO). TC genesis frequency in the WNP also

experiences a significant intraseasonal variation

(Yamazaki and Murakami 1989; Hartmann et al. 1992;

Liebmann et al. 1994; Fu et al. 2007). In particular, Li and

Zhou (2013) showed that in the WNP, northeastward-

propagating MJO predominantly controls the basinwide

TC frequency. A number of numerical studies have

showed that the MJO provides a source of predictability

for TC genesis (Fudeyasu et al. 2008; Fu and Hsu 2011;

Vitart 2009; Belanger et al. 2010; Elsberry et al. 2010;

Satoh et al. 2012; Xiang et al. 2015a). Therefore, it is

important to evaluate whether models adequately simu-

late the MJO and its association with TC genesis.

Figure 11 compares Wheeler–Kiladis diagrams

(Wheeler and Kiladis 1999; Kim et al. 2009) that show

observed and simulated zonal wavenumber–frequency

power spectra of meridionally symmetric and antisym-

metric components of OLR, divided by the background

power. The simulatedMJO signals in the period range of

30–80 days in both FLOR and HiFLOR are strong and

comparable to each other, although the simulated signals

are slightly weaker than observed. When the two models

are compared, HiFLOR simulates stronger atmospheric

Kelvin waves and mixed Rossby–gravity waves (MRG),

which are closer to observations than for FLOR.

Figure 12 represents composites of anomalies of TC

genesis frequency superposed on anomalies of OLR for

eachMJOphase during boreal summer (May–October).

FIG. 11. Wheeler–Kiladis diagram showing zonal wavenumber–frequency power spectra of (top) symmetric and (bottom) antisym-

metric components of OLR (shadings) for (a) observations using AVHRR and NCEP–NCAR data (1979–2005), (b) HiFLOR (300-yr

control experiment), and (c) FLOR (300-yr control experiment). ER,MRG, and EIG stand for equatorial Rossby, mixedRossby–gravity,

and eastward inertia–gravity, respectively.
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Figure S4 in the supplemental material shows these

during boreal winter (November–April). Note that

these composites are made when the MJO index ex-

ceeds one standard deviation for each phase (i.e., the

active MJO phase). Following Wheeler and Hendon

(2004), the MJO index is obtained from the magnitude

of the first two principal components of the multivariate

empirical orthogonal functions (EOFs) using daily

mean OLR, 850-hPa zonal wind, and 200-hPa zonal

wind. Observations indicate that events of TC genesis

are more frequent during theMJO active phase for each

basin, as reported in Maloney and Hartmann (2000)

and Li and Zhou (2013). This modulation of TC genesis

is also well simulated in the 300-yr control simulations

of FLOR and HiFLOR. Figure 13 illustrates the TC

genesis rate for each MJO phase in each basin. Overall,

theMJO simulations of FLORandHiFLORare similar,

and both models reproduce the observed enhancement

of TC genesis during the active MJO phase.

Although MJO is reasonably simulated in both

HiFLOR and FLOR, both models substantially over-

estimate (underestimate) TC genesis frequency in the

WNP (ENP and NAT). On the other hand, Murakami

et al. (2012) reported that the 20-km-meshMRI-AGCM

yielded a realistic simulation of the global TC distribu-

tion, although Yoshimura et al. (2015) reported that

the model’s MJO is much weaker than observed.

Moreover, Kodama et al. (2015) reported that simulated

TC numbers are similar to observations, even though

the MJO amplitude is smaller than observations. These

results, in combination with the present study, suggest

that model performance in simulating the global TC

distribution may be only weakly related to performance

in simulating the MJO.

g. Retrospective seasonal forecast for 1997/98

To provide a preliminary assessment of the pre-

dictability of intense TCs in HiFLOR, we conducted a

couplet of 36-member ensemble retrospective seasonal

forecasts initialized on 1 July in 1997 and 1998. These

start dates were chosen as they allow us to target the

extreme El Niño and La Niña events of 1997/98 and

1998/99, respectively. The boreal summer in 1997 was in

sharp contrast to that in 1998 in terms of global TC ac-

tivity (Pasch et al. 2001; Du et al. 2011; Tao et al. 2012;

Zhao et al. 2014). The 1997 TC season is characterized

by more frequent and intense TCs in the WNP as well

as less frequent and weaker TCs in the NAT associated

with strong El Niño (Fig. 14a). Meanwhile, the 1998

TC anomalies largely oppose to those of 1997, arising

from the strong La Niña (Fig. 14b). Of particular inter-

est in this study is to elucidate whether HiFLOR can

FIG. 12. Composites of anomalies of TGF (shadings) superposed on anomalies of OLR (contours) during boreal summer (May–

October) for (top)–(bottom) each MJO phase in (a) observations (1979–2005), (b) HiFLOR (300-yr control experiment), and (c) FLOR

(300-yr control experiment). Composites are made when the MJO index exceeds one standard deviation. Number of days for each

composite is shown in the bottom-right box in each panel. The TGF is computed in each analyzed 2.58 3 2.58 grid cell with 9-point

smoothing. The contour interval is 5Wm22, with dashed contours representing negative values.
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predict the above contrasts in the intense TCs of hurri-

canes and C4 and C5 hurricanes. The contrast in large-

scale climate and TCs between these two years

provides a useful benchmark for predictability, but the

results reported here should not be interpreted as ap-

plying broadly to predictive skill for all years.

Figure 14 shows predicted TC tracks in HiFLOR

compared to observations. Note that all TC tracks pre-

dicted in the 36 ensemble members are superposed in

the figure. Figure 15 shows the differences in the mean

TCF between 1997 and 1998 for each TC intensity

category. Figure 16 shows box plots for predicted TC

numbers for each TC intensity category superposed on

the observed TC numbers (triangles). The predicted

TC tracks in 1998 are concentrated in the South China

Sea (Fig. 15b), whereas those in 1997 expand farther east

of the open ocean in the WNP (Fig. 15b), which is con-

sistent with observations (Fig. 15a). Moreover, the ob-

served east–west contrasts in hurricanes and C4 and

C5 hurricanes in the WNP are well predicted in

HiFLOR (Figs. 15c–f). The observed contrast in the

number of intense TCs in the WNP is also predicted

in HiFLOR (Figs. 16d,g), although the HiFLOR test

forecasts systematically overestimate these numbers

relative to observations, similar to the other HiFLOR

experiments (Figs. 3 and 8b). In the NAT, the predicted

FIG. 13. TC genesis rate for eachMJO phase for each basin. For each ocean basin, the TC genesis rate is computed

by dividing the number of generated TCs by the number of active-phase days of theMJO (as shown in Fig. 12). Then

the fractional rate is normalized by the total rates summed over allMJOphases. Lines show results from observations

(black), HiFLOR (red), and FLOR (blue).
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mean TC number for all storms in 1998 is 2 times larger

than that in 1997, which is consistent with observations

(Fig. 16c). Moreover, HiFLOR was able to retrospec-

tively predict the observed 2-yr contrasts in the num-

bers of hurricanes (Fig. 16f) and C4 and C5 hurricanes

(Fig. 16i). As for the ENP, the observed 2-yr contrasts

in the numbers of all storms and hurricanes are also

predicted in HiFLOR (Figs. 16b,e), although HiFLOR

underestimates C4 and C5 hurricanes (Fig. 16h).

Generally, the observed contrasts between 1997 and

1998 in the intense TCs are well retrospectively pre-

dicted in HiFLOR, in both relative basinwide fre-

quency and in the spatial structure of TCF differences

between the two years.

4. Summary

We have developed HiFLOR, a high-resolution

version of the GFDL Forecast-Oriented Low Ocean

Resolution (FLOR) model. HiFLOR was developed

from FLOR by reducing the horizontal grid spacing of

the atmosphere and land components from 50- to

25-km mesh with only minor changes to the dynamical

core and physical parameterizations. Two sets of sim-

ulations were conducted using HiFLOR: a 300-yr

control climate simulation with prescribed radiative

forcing and land-use conditions representative of 1990;

and restoring experiments over 1971–2012 in which the

simulated SSS and SST are restored to the observations

at 5- or 10-day time scales. Simulated TCs are com-

pared with those from similar experiments conducted

using FLOR. In addition, a couple of ensemble sea-

sonal predictions for 1997 and 1998 were performed

with HiFLOR.

In its control simulation, HiFLOR reproduces the

climatological spatial distribution of the global TCs

more realistically than FLOR does. In particular,

HiFLOR reduces biases in the frequency of TC occur-

rence in the central Pacific, South Pacific, North Atlan-

tic, and IndianOceans. The simulated distribution of TC

intensity by HiFLOR is also comparable to observa-

tions, whereas FLOR cannot simulate intense TCs.

HiFLOR is able to simulate extremely intense TCs

(hurricane categories 4 and 5) reasonably well compared

to observations. The simulated TC intensity in HiFLOR

is of comparable skill to that in a high-resolutionAGCM

reported in Murakami et al. (2012) and Manganello

et al. (2012) and to that with double dynamical down-

scaling reported in Bender et al. (2010) and Knutson

et al. (2008, 2013, 2015). However, this study represents

the first global coupled climate model to successfully

simulate such intense TCs in a multicentury simulation.

FIG. 14. Observed TC tracks during July–November for (a) 1997 and (b) 1998. (c),(d) As in (a),(b), but for ret-

rospective prediction results for the 36-member ensemble retrospective forecast initialized on 1 Jul using HiFLOR.

The numbers for each basin show the seasonal mean number of TCs. TC tracks are colored according to the in-

tensities of the TCs as categorized by the Saffir–Simpson hurricane wind scale. Dots denote TC genesis locations.
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HiFLOR simulates reasonable structure for the TCs

while also capturing the observed relationship between

the maximum surface wind speed and the minimum sea

level pressure. The composite TC structure in HiFLOR

was compared with FLOR and observations and re-

vealed that HiFLOR reasonably simulated the location

of maximum wind speed and the surface oceanic cold

wake induced by the storm’s strong wind stresses.

Although HiFLOR appears to inherit model biases

from FLOR and CM2.5 in terms of the seasonal cycle of

TC frequency, the simulated seasonal cycle has been

considerably improved in HiFLOR relative to FLOR.

Comparisons between SST-restored versions of FLOR

and HiFLOR reveal that HiFLOR more skillfully sim-

ulates the interannual variation of TC genesis frequency

when compared to FLOR, except for the NIO and

WNP. Specifically, the SST-restored HiFLOR exhibi-

ted high correlation coefficients with the observed

interannual variations of hurricanes (r 5 0.77) and cat-

egory 4 and 5 hurricanes (r 5 0.64) in the NAT. This

is the first time that a global climate model has success-

fully reproduced the observed year-by-year variations

in category 4 and 5 hurricanes under restored-SST

experiments. Both FLOR and HiFLOR exhibit a

strong 30–80-day Madden–Julian oscillation, whose

active phase enhances TC genesis as observed, indicating

potential skill in predicting TC genesis events at intra-

seasonal time scales. The initial tests for retrospective

seasonal forecasts for 1997/98 TC seasons reveal that

HiFLOR has substantial skills in predicting the observed

contrasts between 1997 and 1998 in terms of frequency

of hurricanes and category 4 and 5 hurricanes and their

spatial distributions.

In summary, the use of a higher-resolution atmo-

spheric component appears to be desirable for accurate

simulation of TCs. HiFLOR can be also used for at-

tribution studies through idealized experiments to

elucidate the contributions of anthropogenic forcing

and natural variability to the observed recent upward

trend in the frequency of category 4 and 5 hurricanes

(Murakami et al. 2014b). Although HiFLOR has a

substantially improved TC climatology compared with

FLOR, HiFLOR still has a substantial bias in TC fre-

quency in the WNP and NA. Although, as Vecchi et al.

(2014) reported, simulations of the TC climatology and

temporal variations can be substantially improved by

FIG. 15. Difference in TC frequency of occurrence between 1997 and 1998 for all TCs from (a) observations and

(b) results from retrospective seasonal predictions by HiFLOR (mean of 36 members). (c),(d) As in (a),(b), but for

TCs with hurricane intensity (.64 kt). (e),(f) As in (a),(b), but for TCs with intensity of category 4 and 5 hurricanes

(.114 kt).
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correcting ocean biases via artificial flux adjust-

ments, it will ultimately be desirable to minimize these

biases through continued improvements in model

formulation.
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