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ABSTRACT

The influence of model biases on projected future changes in the frequency of occurrence of tropical cyclones

(FOCs) was investigated using a new empirical statistical method. Assessments were made of present-day (1979–

2003) simulations and future (2075–99) projections, using atmospheric general circulation models under the

Intergovernmental Panel on Climate Change (IPCC) A1B scenario and phase 5 of the Coupled Model In-

tercomparison Project (CMIP5) models under the representative concentration pathway (RCP) 4.5 and 8.5 sce-

narios. The models project significant decreases in global-total FOCs by approximately 6%–40%; however, model

biases introduce anuncertainty of approximately 10% in the total future changes. The influenceof biases depends on

themodel physics rather thanmodel resolutions and emission scenarios. In general, the biases result in overestimates

of projected future changes in basin-total FOCs in the north Indian Ocean (by 118%) and South Atlantic Ocean

(1143%) and underestimates in the western North Pacific Ocean (227%), eastern North Pacific Ocean (229%),

and North Atlantic Ocean (253%). The calibration of model performance using the smaller bias influence appears

crucial to deriving meaningful signals in future FOC projections. To obtain more reliable projections, ensemble

averages were calculated using the models less influence by model biases. Results indicate marked decreases in

projected FOCs in the basins of the Southern Hemisphere, Bay of Bengal, western North Pacific Ocean, eastern

North Pacific, and Caribbean Sea and increases in the Arabian Sea and the subtropical central Pacific Ocean.
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1. Introduction

The effects of anthropogenic warming on tropical

cyclone (TC) activity are critical for estimating the fu-

ture costs of climate-related socioeconomic impacts.

Recently, many studies have attempted to address fu-

ture changes in TC activity using high-resolution at-

mospheric general circulation models (AGCMs) (e.g.,

Zhao et al. 2009; Bender et al. 2010;Murakami et al. 2012b;

Knutson et al. 2013), atmosphere–ocean coupled general

circulation models (CGCMs) (e.g., Yokoi et al. 2012; Mori

et al. 2013), and statistical–dynamicalmodels (e.g., Emanuel

et al. 2008; Emanuel 2013). Most studies tend to show

projected decreases in the TC genesis frequency globally

(Knutson et al. 2010); however, projected changes in TC

genesis frequencies are highly variable at interocean basin

scales (e.g., Emanuel et al. 2008; Zhao et al. 2009; Knutson

et al. 2010; Murakami et al. 2012a,b; Zhao and Held 2012).

Models show substantial inconsistencies in projected re-

gional changes in the frequency of occurrence of TCs

(FOC), which is defined as the total count of TC positions

for each analyzed grid cell (i.e., 108 3 108) in a 6-h interval

for all TCs during their lifetime. For example, Murakami

et al. (2011), Yokoi and Takayabu (2009), and Yokoi et al.

(2012) showed a projected eastward shift in the location of

peakFOCs in thewesternNorthPacific,whereasMurakami

et al. (2012b) and Li et al. (2010) reported an overall de-

crease in FOCs in the basin. Murakami and Wang (2010)

and Colbert et al. (2013) showed a projected eastward shift

in the peak FOC in the North Atlantic, whereas Knutson

et al. (2013) did not report such a shift in their projections.

Knutson et al. (2010), based on intermodel comparisons

of fractional changes in TC activity, reported a wide range

of genesis frequency changes at regional scales. To ade-

quately estimate the range of projections associated with

model variations, equal-weighted multimodel ensemble

averages (EQW) would be a useful strategy. However, a

number of questions remain regarding the multimodel

ensemble approach. Is it appropriate to include models

withmarked biases in their control simulations as ensemble

members? To what extent do biases in present-day simu-

lations influence projected future changes in FOCs? Is it

reasonable to assume thatmodel biases do not substantially

influence estimates of future changes, based on the as-

sumption that subtracting simulated present-day means

from projected futuremeans offsets model biases? Figure 1

provides examples showing that the last assumption may

not be applicable to projected future changes in FOCs; the

figure compares projected future changes in FOCs (con-

tours) with model biases in present-day simulations relative

to observed FOCs (shadings), using two different models.

For the bias (future change), as will be discussed in detail

later in section 2, FOCs of the 25-yr present-day (future)

experiment are subtracted from those of observed (present-

day experiment) without any normalizations. The top panel

shows a positive correlation in the Northern Hemisphere

between the projected future changes and present-day

model biases in FOCs, indicating that, if the model un-

derestimates (overestimates) FOCs in the present-day

simulation in a specific ocean basin, then it also tends to

predict decreases (increases) in FOCs in the respective ba-

sins in the future. In contrast, the bottom panel shows

a negative correlation in most of the basins between pro-

jected future changes and model biases in FOCs, indicating

that, if the model underestimates (overestimates) FOCs in

the present-day simulation, then it tends to predict increases

(decreases) in FOCs in the respective basins in the future. In

the positive correlation cases, it is possible thatmodel biases

in the present-day simulation are retained or amplified in

the future projections. In the negative correlation cases,

projected shifts in location of peak FOCs may be exagger-

ated because of the underlyingmodel biases in FOCs in the

present-day simulation. These marked correlations may

indicate that present-day model biases could thus be in-

herited to the projections of future changes in FOCs.

To estimate the extent to which model biases in

present-day simulations are inherited by projections of

future changes in FOCs, we applied a new empirical sta-

tistical analysis that decomposes projected future changes

into two components: 1) future changes related to model

biases in the present-day simulation and 2) signals of future

change representing results of a perfect model (i.e., biases

are absent). We used simulation/projection results by 10

AGCMs developed by the Meteorological Research

Institute (MRI) and 11 CGCMs from phase 5 of the

CoupledModel Intercomparison Project (CMIP5) (Taylor

et al. 2012; Camargo 2013; Tory et al. 2013) as case studies.

Our ultimate goal is to generate ensemble means using

models that reduce the inheritance of biases to increase the

reliability of information on projections of future changes

in FOCs. On the other hand, the multimodel ensemble

approach has been widely discussed in the literature for

comprehensive forecast and projection frameworks such

as short-range weather forecasting (Raftery et al. 2005;

Casanova and Ahrens 2009), seasonal forecasting (Tippet

et al. 2005; Casanova andAhrens 2009), decadal prediction

(Tippet 2006), and future climate projection (Perkins and

Pitman 2009; Santer et al. 2009; R€ais€anen et al. 2010;

Chen et al. 2011). A number of ensemble techniques

such as skill-based weighing (Giorgi and Mearns 2003;

Schmittner et al. 2005; Perkins and Pitman 2009;

Santer et al. 2009), weighing based on intermodel

similarity (Whetton et al. 2007; R€ais€anen et al. 2010),

weighing using a signal-to-noise empirical orthogonal

function (Tippet 2006), the statistical–dynamical method

(Tippet et al. 2005), and Bayesian methods (Raftery et al.
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2005; Casanova and Ahrens 2009) have also been pro-

posed. In the context of the literature, the proposed

methodology in this study is not novel because it is simply

a skill-based weighing approach applied to climate pro-

jections. However, the application to tropical cyclone

projections may be new because most of the literature

focuses on temperature or precipitation fields.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the models, experimental design, and

methods of analysis. Section 3 assesses the performance of

present-day simulations and of projected future changes in

FOCs and TC genesis frequencies. Next, the relationships

betweenmodel biases andprojected future changes inFOCs

are examined and the ensemblemean approach is discussed.

Finally, section 4 provides a summary of the results.

2. Methods

a. Models and simulation settings

Table 1 lists the models used in this study. We used 10

MRI-AGCMs representing different versions (versions

3.1, 3.2, and 3.3), different resolutions (20-, 60-, 120-, and

200-km mesh), and different cumulus convection schemes

of the model. Version 3.1 of the MRI-AGCM, which

is based on a global model developed by the Japan

Meteorological Agency (JMA) and MRI (Mizuta

et al. 2006), was developed to address potential future

changes in TCs (Oouchi et al. 2006; Sugi et al. 2009;

Murakami and Sugi 2010; Murakami and Wang 2010;

Murakami et al. 2011). Version 3.2 was developed from

version 3.1, with some modifications of the physical pro-

cess components (Mizuta et al. 2012). Of particular rele-

vance to this version is the use of a new cumulus

convection scheme by Yoshimura (Yukimoto et al. 2011),

which substantially improves the simulation of tropical

precipitation and TC climatology (Mizuta et al. 2012;

Murakami et al. 2012b). In version 3.3, which is very sim-

ilar to version 3.2, several parameters in specific physical

schemes were tuned to the MRI Earth System Model,

version 1 (MRI-ESM1) (Yukimoto et al. 2011). To in-

crease the sample sizes for the analyses, we also used re-

sults of 11 high-resolution CMIP5 models (with meshes

finer than 200km), which provide 6-hourly outputs for the

TC-detection method that is described in section 2c.

FIG. 1. Projected future changes in FOC (contours; TCs per year) superposed on model bias

(shading; TCs per year), based on results of two models: (a) results of MRI-AGCM3.2L (YS)

show a positive correlation case in theNorthernHemisphere between projected future changes

andmodel biases and (b) results of MRI-AGCM3.3H (YS) show a negative correlation in most

of the basins between projected future changes and model biases. The FOC is defined as a total

count of TC positions in each analyzed 108 3 108 grid cell within the global domain in 6-h

intervals. The abbreviations for the basins are given in the text.
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TABLE 1. List of models used in this study. From left to right: model identifier (ID), model acronym, expanded model name, horizontal

resolution, model-dependent criteria for TC detection (relative vorticity at 850 hPa and temperature anomaly), and model performance

score in the present-day simulation of frequency of occurrence of tropical cyclones in terms of the root-mean-square error and the Taylor

skill score II.

Horizontal

resolution

TC detection

criteria

Performance

scores

ID Model name Expanded model name [lat 3 lon (km2)] z850 (m s21) ta (8C) RMSE S2

MRI-AGCM versions

A1 MRI-AGCM3.1S

(AS)

MRI AGCM, version 3.1, super

high resolution with

Arakawa–Shubert schemea

0.18758 3 0.18758
(20 3 20)

3.128 3 1024 1.0 6.59 0.68

A2 MRI-AGCM3.1H

(AS)

MRI AGCM, version 3.1,

high resolution with

Arakawa–Shubert scheme

0.56258 3 0.56258
(60 3 60)

1.143 3 1024 1.0 7.45 0.55

A3 MRI-AGCM3.1M

(AS)

MRI AGCM, version 3.1,

medium resolution with

Arakawa–Shubert scheme

1.12508 3 1.12508
(120 3 120)

8.330 3 1025 1.0 6.41 0.64

A4 MRI-AGCM3.1L

(AS)

MRI AGCM, version 3.1,

low resolution with

Arakawa–Shubert scheme

1.87508 3 1.87508
(200 3 200)

7.680 3 1025 1.0 8.66 0.34

B1 MRI-AGCM3.2S

(YS)

MRI AGCM, version 3.2, super

high resolution with

Yoshimura schemeb

0.18758 3 0.18758
(20 3 20)

3.540 3 1024 1.0 4.73 0.80

B2 MRI-AGCM3.2H

(YS)

MRI AGCM, version 3.2, high

resolution with Yoshimura

scheme

0.56258 3 0.56258
(60 3 60)

1.000 3 1024 1.0 5.46 0.73

B4 MRI-AGCM3.2L

(YS)

MRI AGCM, version 3.2, low

resolution with Yoshimura

scheme

1.87508 3 1.87508
(200 3 200)

5.360 3 1025 0.8 6.92 0.56

C2 MRI-AGCM3.2H

(KF)

MRI AGM, version 3.2, high

resolution with Kain–Fritsch

schemec

0.56258 3 0.56258
(60 3 60)

3.100 3 1024 1.0 4.30 0.83

D2 MRI-AGCM3.2H

(AS)

MRI AGCM, version 3.2,

high resolution with

Arakawa–Shubert scheme

0.56258 3 0.56258
(60 3 60)

5.250 3 1025 0.5 8.40 0.53

E2 MRI-AGCM3.3H

(YS)

MRI AGCM, version 3.3, high

resolution with Yoshimura

scheme

0.56258 3 0.56258
(60 3 60)

3.700 3 1024 1.0 6.55 0.69

CMIP5 models

1 CCSM4 Community Climate System

Model, version 4

1.25008 3 0.93758
(130 3 100)

8.000 3 1025 1.0 7.93 0.41

2 CMCC-CM Centro Euro-Mediterraneo

per I Cambiamenti Climatici

Climate Model

0.75008 3 0.75008
(80 3 80)

1.575 3 1024 1.0 5.50 0.75

3 CNRM-CM5 Centre National de Recherches

M�et�eorologiques Coupled

Global Climate Model,

version 5

1.40628 3 1.40628
(150 3 150)

4.500 3 1025 0.9 7.32 0.45

4 CSIRO Mk3.6.0 Commonwealth Scientific and

Industrial Research

Organisation Mark,

version 3.6.0

1.87508 3 1.87508
(200 3 200)

7.550 3 1025 1.0 8.32 0.58

5 HadGEM2-CC Hadley Centre Global

Environment Model,

version 2–Carbon Cycle

1.87508 3 1.25008
(200 3 130)

4.000 3 1025 1.0 6.90 0.61

6 HadGEM2-ES Hadley Centre Global

Environment Model,

version 2–Earth System

1.87508 3 1.25008
(200 3 130)

6.100 3 1025 1.0 6.83 0.64

7 MIROC5 Model for Interdisciplinary

Research on Climate,

version 5

1.40628 3 1.40628
(150 3 150)

8.000 3 1025 1.0 6.74 0.64
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Each model employed a pair of simulations: a present-

day simulation (1979–2003) and a global-warmed future

projection (2075–99). The simulation settings using in the

MRI-AGCMswere identical to those used in our previous

studies (Murakami and Sugi 2010; Murakami and Wang

2010; Murakami et al. 2011). Using a ‘‘time slice’’ method

(Bengtsson et al. 1996), the AGCMs were forced by pre-

scribed sea surface temperatures (SSTs) and sea ice con-

centrations (SICs) as the lower boundary conditions. The

present-day simulations were styled after theAtmospheric

Model Intercomparison Project (AMIP) models, in which

the lower boundary conditions are prescribed by observed

monthly mean SSTs and SICs during 1979–2003, obtained

from the first Hadley Centre Global Sea Ice and Sea

Surface Temperature dataset (HadISST1) (Rayner et al.

2003). In the CMIP5models, the present-day simulation is

based on so-called historical runs (Taylor et al. 2012),

which are forced by observed atmospheric compositional

changes reflecting anthropogenic and natural sources and

sinks and time-evolving land-cover conditions.

The target for the future projections was the last

quarter of the twenty-first century (2075–99). For the

MRI-AGCMs, predicted mean changes and future

trends in SSTswere estimated frommodels included in the

phase 3 of the Coupled Model Intercomparison Project

(CMIP3) (Meehl et al. 2007) developed under the Special

Report of Emission Scenarios A1B scenario (Solomon

et al. 2007); the anomalies were superposed on detrended

mean observed SSTs for the period 1979–2003 while the

high-frequency component (interannual variability) re-

mains as the present-day climate (Mizuta et al. 2008). For

the CMIP5 models, projection results under the repre-

sentative concentration pathway (RCP) 4.5 and 8.5 sce-

narios (Taylor et al. 2012) were used in this study. Among

the several ensemble members in the CMIP5 present-day

and future simulations, only one ensemble member for

each model was used in the simulations in this study. We

note that the mean CO2 concentration during the present-

day period (1979–2003) is about 355ppm, whereas the

anticipated CO2 concentration during the future period

(2075–99) is 673, 533, and 820ppm for the A1B, RCP4.5,

and RCP8.5 scenarios, respectively, which is 1.9, 1.5, and

2.3 times greater than the present-day period.

b. Observational datasets

The observed TC ‘‘best track’’ data, obtained from the

website of Unisys Corporation (Unisys 2013), were used

to evaluate the TC simulations in the present-day run and

to compute model biases. The dataset, which consists

of best-track data compiled by the National Hurricane

Center (NHC) and the Joint Typhoon Warning Center

(JTWC), contains historical TC information regarding

the locations of the centers of cyclones, cyclone intensities

(maximum 1-min surface wind speeds), and sea level

pressures at 6-hourly intervals from 1851 to 2009.We only

used TCs with tropical storm intensities or stronger (i.e.,

TCs possessing 1-min sustained surface winds of 35kt or

greater; 1 kt ’ 0.514ms21) during the period 1979–2003.

c. Detection algorithm for tropical cyclones

Model-generated TCs were detected directly from

6-hourly output using the following model-dependent

globally uniform criteria reported in Murakami and

Sugi (2010):

1) The magnitude of the maximum relative vorticity at

850 hPa (z850) exceeds a model-dependent threshold

(Table 1).

2) The temperature structure aloft has a marked warm

core, such that the sum of the temperature deviations

TABLE 1. (Continued)

Horizontal

resolution

TC detection

criteria

Performance

scores

ID Model name Expanded model name [lat 3 lon (km2)] z850 (m s21) ta (8C) RMSE S2

8 MPI-ESM-LR Max Planck Institute Earth

System Model, low resolution

1.87508 3 1.87508
(200 3 200)

4.000 3 1025 0.9 6.52 0.61

9 MPI-ESM-MR Max Planck Institute Earth

System Model, medium

resolution

1.87508 3 1.87508
(200 3 200)

4.000 3 1025 0.7 6.82 0.58

10 MRI-CGCM3 MRI Coupled Atmosphere–

Ocean General Circulation

Model, version 3

1.12508 3 1.12508
(120 3 120)

1.560 3 1024 1.0 7.76 0.56

11 BCC_CSM1.1 Beijing Climate Center, Climate

System Model, version 1.1

1.12508 3 1.12508
(120 3 120)

1.675 3 1024 1.0 8.04 0.51

a See Arakawa and Schubert (1974) and Randall and Pan (1993) for details.
b See Yukimoto et al. (2011) for details.
c See Kain and Fritsch (1990) for details.
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at the 300-, 500-, and 700-hPa vertical levels exceeds a

model-dependent threshold (ta in Table 1). The tem-

perature deviation for each level was computed by

subtracting the maximum temperature from the mean

temperature in a surrounding 108 3 108 grid box. Be-

cause two pressure levels (i.e., 300 and 700hPa) are

not available in the CMIP5 output, the 250-, 500-, and

850-hPa vertical levels were used in the CMIP5models.

3) The maximum wind speed at the 850-hPa vertical

level is greater than that at 300 hPa (250 hPa for the

CMIP5 models), in order to exclude extratropical

cyclones.

4) The genesis position, defined as the first position at

which criteria 1–3 are satisfied, is over the ocean.

5) The duration exceeds 36 h. Termination during a sin-

gle time step is allowed to prevent double TC counts

arising from detection and termination during the

time step.

The model-dependent criteria in 1 and 2 are optimized

for a givenmodel configuration to ensure that the present-

day global annual mean TC number matches observed

values (84 per year for the period 1979–2003). We note

that it is possible that analyzed results throughout this

study are dependent on the selected TC-detection algo-

rithm. For example, a unified detection algorithm used

for all models could result in different results for model

biases for some models because of resolution differences.

We also note that differences in TC-detection algorithms

result in discrepancies in projected future changes in TC

frequency, even in the sign of the projected future change

(discussed later in summary). Further study is required to

address the dependency of the detection method on the

results.

The TC positions in each 108 3 108 grid box were

counted within the global domain at 6-h intervals. The

total count for each grid box is defined as the FOC. The

first detected position is defined as the location of TC

genesis, and the frequency of occurrence of TC genesis

(FOG) is counted similarly to that of the FOC. The

analyses considered total global (GL) results and results

for seven ocean basins: north Indian Ocean (NIO);

western North Pacific (WNP); eastern North Pacific

(ENP); North Atlantic (NAT); south Indian Ocean

(SIO); South Pacific Ocean (SPO); and South Atlantic

(SAT) (see Fig. 1 for regional boundaries).

d. Empirical statistical model of FOCs

A new empirical statistical analysis of FOCs can reveal

the quantitative contributions of two factors to projected

future changes in FOCs, 1) model biases and 2) signals of

future change, on the assumption that the model pre-

dicting future change is not biased in its simulation of

present-day conditions. The analysis, which was origi-

nally developed by Yokoi and Takayabu (2013) and

Murakami et al. (2013a,b), is applied in the present study,

with the modifications noted below.

First, we consider the FOCs in each analyzed grid cell

(108 3 108) within the global domain (508S–508N, over

all longitudes). The FOC at a local grid cell A is influ-

enced by both TC genesis frequency and track properties

at remote grid cellsA0 so that the observed climatological

mean of the FOC in a grid cell A can be expressed as an

integration of the TC properties over the remote grid

cells as follows:

fo(A)5

ðð
C
go(A0)to(A,A0) dA0 , (1)

where f(A) is the FOC in grid cellA, g(A0) is the FOG in

remote grid cellA0; t(A, A0) is the probability that a TC

generated in grid cell A0 travels to grid cell A; and C is

the global domain over which the integration is per-

formed. The subscript o for f, g, and t indicates the ob-

served value. An overbar indicates the climatological

mean value.

The simulated present-day mean FOC, with an ac-

counting of model biases, is computed as

fp(A)5 fo(A)1 f 0b(A)

5

ðð
C
[go(A0)1g0b(A0)][to(A,A0)1t0b(A,A0)] dA0 ,

(2)

where the subscripts p and b represent present-daymeans

and model biases, respectively, and a prime symbol in-

dicates an anomaly (in this case, a model bias). Likewise,

the projected future mean FOC is computed as

ff (A)5 fp(A)1 f 0c(A)5 fo(A)1 f 0b(A)1 f 0c(A)

5

ðð
C
[go(A0)1 g0b(A0)1 g0c(A0)][to(A,A0)1 t0b(A,A0)1 t0c(A,A0)] dA0 , (3)

where the subscripts f and c represent the projected future

value and the future change, respectively. Subtracting

Eq. (2) from Eq. (3) yields the projected future change

in the FOC expressed as
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df (A)5

ðð
C
go(A0)t

0
c(A,A0) dA0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T
s

1

ðð
C
g0c(A0)to(A,A0) dA0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G
s

1

ðð
C
g0c(A0)t

0
c(A,A0) dA0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N

s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
df

s

1

ðð
C
g0b(A0)t

0
c(A,A0) dA0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G

b

1

ðð
C
g0c(A0)t

0
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. (4)

Equation (4) reveals the contribution of five factors in-

tegrated over the entire domain to the projected future

change in the FOC in a given grid cell. The first three

terms inEq. (4) ([dfs) are signals of future changes based

on the assumption that the model simulates observed

FOCs perfectly (i.e., without biases). The three terms

consist of the TC track effectTs, TC genesis effectGs, and

a combined nonlinear effect Ns. In contrast, the last two

terms in Eq. (4) ([dfb) are signals of future changes re-

lated to interactions between the model biases and the

future changes. The two terms consist of future changes

related to biased estimates of the FOG Gb and biased

estimates of the TC track property Tb.

Our analysis indicates domain-wide effects of TC ac-

tivity on local FOCs. For example, the magnitude of Gs

implies that varying FOGs generate local FOC changes,

while TC track properties (e.g., moving directions and

speeds) are kept as observations over the global domain.

If the magnitude of this term is greater than that of other

terms for the grid cellA, then projected changes in FOG

somewhere in the domain must have a large impact on

FOC changes in grid cell A. Note that, if the model

biases are zero, then future change in FOCs can be

computed from only the first three terms; thus, the ratio

of the summed magnitudes of the bias terms to the

magnitudes of the total future change in FOCs (RBTC;

i.e., dfb/df) can be regarded as the degree to which

model biases are inherited in projected future changes

in FOCs, which can be represented as

RBTC[

8>>><
>>>:

dfb/df (df 6¼ 0)

dfb/fp (df 5 0 ^ fp 6¼ 0)

null (df 5 0 ^ fp 5 0)

, (5)

where fp is themean value of the FOC in the present-day

simulation.

The RBTC is a normalized value with a positive or

negative sign. The schematic in Fig. 2 shows the impli-

cations of the magnitudes and signs of the RBTC. In the

ideal case, the value of the RBTC is zero (Fig. 2a), as the

model contains no biases (i.e., the model is perfect); in

this case, projected future changes are not influenced by

model biases. Smaller absolutemagnitudes of the RBTC

imply less influence of model biases on projected future

changes. If the value of the RBTC is greater than 1, this

indicates that projections of future changes are unreli-

able, as the future changes associated with the model

biases are greater than the total projected future change.

A positive value of the RBTC (Fig. 2b) indicates that

the model overestimates future changes on account of

the bias terms (i.e., df . dfs), whereas a negative value

of the RBTC (Fig. 2c) indicates that the model under-

estimates projected changes on account of the bias terms

(i.e., df , dfs). If the projected future change is zero

(Fig. 2d), the present-day mean value fp is used to nor-

malize for the RBTC. If df and fp are both zero, RBTC is

set to a null value in this study.

Note that model biases in future simulations that we

are unable to be address are not considered. The biases

in the future simulations may be included in the signal of

the future change term [dfs in Eq. (4)] as well as the bias

term. If the model biases in the future are identical to

those in the present day, the bias term in Eq. (4) dfb
would be offset by a part of the future change term dfs;

therefore, model biases do not always contribute to the

total change in the FOCs. However, because observa-

tions in the future are not available, it is beyond the

scope of this study to estimate the biases associated with

future simulations. In this study, we only address the

relationships between the model biases in the present-

day simulations and the total projected future changes.

As discussed in section 1, we generate ensemble means

using models that reduce the inheritance of biases (i.e.,

models with small RBTC) to increase the reliability of

future projections. Although there are a number of pos-

sible methods to average the models, we selected models

with RBTC # 0.5 for each basin in this study as a pre-

liminary step. The threshold value of 0.5 is arbitrary and

subjective; however, our preliminary study suggests that

ensemble means are not sensitive to the threshold value

when it ranges from 0.25 to 1.0. The proposed ensemble
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approach using RBTC threshold eliminates some ‘‘bad’’

climate models that show larger influence of biases, which

differs from the downweighting approach (e.g., Chen et al.

2011) where all models have a nonzero weight even if the

model performance is bad. Therefore, it is possible that

the ensemblemean in a specific basin could be determined

by using single model if the rest of the models show larger

RBTC. In section 3d, the ensemble means using models

withRBTC# 0.5 will be comparedwith those using EQW

and models with the five highest S2 scores. As will be

shown later, one of the advantages using models with

smaller RBTC for the ensemble mean is that we can get

the ensemble mean with smaller RBTC than EQW and

models with the five highest S2 scores, leading to greater

confidence in quantitative analyses on future changes.

3. Results

a. Present-day performance

A Taylor diagram (Taylor 2001) (Fig. 3) was used to

evaluate model performance in terms of the global dis-

tribution of FOCs in the present-day simulation. Table 1

lists the root-mean-square error (RMSE) and the Taylor

skill score II (S2; Taylor 2001) for each model; S2 is de-

fined as

FIG. 2. Schematic diagram explaining the ratio of the sum of the bias terms dfb to the total projected change df

(referred to as the RBTC). (a) In this case, dfb 5 0, df5 dfs, and RBTC5 0. (b) When dfb and dfs are both positive

(i.e., RBTC. 0), the projected future changes are overestimated (i.e., df. dfs). (c)When dfb is negative (RBTC, 0),

projected future changes are underestimated (i.e., df , dfs). (d) A special case, in which dfb and dfs are of the same

magnitude but with opposite signs, such that the projected future changes equal zero. In this case, the present-daymean

value fp is used to normalize for the RBTC.
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S25
4(11R)4

(ŝf 1 1/ŝf )
2(11R0)

4
, (6)

where R is the spatial correlation coefficient between

simulated and observed FOC fields, R0 is the maximum

correlation attainable (1.0 for simplicity), and ŝf in-

dicates modeled standard deviation in the global distri-

bution of FOCs normalized by corresponding observed

values. The parameter S2, which represents the com-

bined influence of the spatial variance and spatial cor-

relation, ranges from 0.0 (no skill) to 1.0 (perfect skill

level). Figure 3 reveals that the models with the highest

skill level are the high-resolutionMRI-AGCMs (models

E andG) followed by a CMIP5model of the CMCC-CM

(model 2). When the MRI-AGCMs are compared, the

finer-resolution models tend to show higher skill levels

in terms of S2, indicating that high-resolution models

are generally desirable for accurate simulations of TC

spatial distributions (Murakami and Sugi 2010; Walsh

et al. 2013). However, this relationship is not clear in

the CMIP5 models, except in the case of the finest-

resolutionmodel of the CMCC-CM (80-kmmesh), which

shows the highest skill level. The models also tend to

show smaller standard deviations than observations, in-

dicating that models underestimate spatial contrast in

the FOC distribution.

b. Projected future changes in the TC genesis
frequency and FOC

Tables 2 and 3 show projected future changes in the

TC genesis frequency and the basin-total FOC, respec-

tively, for each experiment and for each basin. Overall,

projected future changes in FOCs correspond to those of

TC genesis frequency, indicating that changes in the TC

genesis frequency are a primary contributor to changes

in the basin-total FOC.Most of the models showmarked

and statistically significant reductions in the TC genesis

frequency and the FOC in theGL (by 15%–29% for A1B;

by 6%–23% for RCP4.5; and by 13%–40% for RCP8.5),

which is likely to be proportional to the anticipated

mean CO2 concentration in the future. However, a few

CMIP5 models under RCP8.5 scenario show a marked

projected increase in global TC number (i.e., models 1, 2,

and 11) that is consistent with recent studies by Camargo

(2013) and Emanuel (2013) but inconsistent with Tory

et al. (2013). The substantial increases shown by these

models are mostly attributed to increases in TC number

in the NIO,WNP, and ENP. Further analyses are needed

to explain the physical reasons for these increases; how-

ever, the above results may imply that the projected fu-

ture change in global TC number is not always linear to

the fractional increase in CO2 concentration but are

model dependent.

FIG. 3. Taylor diagram showing evaluations of the simulated global distribution of FOCs vs

best-track data defined as reference. The different models are represented according to the

inset legend. The dashed line represents results for the reference standard deviation. The solid

contours represent values of S2 as defined in Eq. (6). The star mark indicates reference used

from the best-track data.
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The projected reductions are also substantial and

robust in the Southern Hemispheric ocean basins (SIO

and SPO), a result that is consistent with the findings of

previous studies (e.g., Knutson et al. 2010; Murakami

et al. 2012b). Most of the MRI-AGCMs under the

A1B scenario project marked reductions in TC genesis

frequency and FOCs in the WNP and ENP; how-

ever, the fractional ratios vary substantially among

the models (by 5%–30%). Projected future changes in

both TC genesis frequency and FOCs by the CMIP5

models under RCP4.5 and RCP8.5 scenarios are highly

variable in the WNP and ENP. Moreover, even the

TABLE 2. Fractional changes in the annual mean frequency of tropical cyclone genesis (%) according to the different models (from top

to bottom: MRI-AGCM A1B, CMIP5 RCP4.5, and CMIP5 RCP8.5). Statistically significant changes (by the bootstrap method) are

highlighted according to the level of significance: 99%, 95%, and 90% (see footnotes). Model IDs are given in Table 1. The ensemble

means shown are equal averages of the models (EQW), models with RBTC # 0.5, and models with the five highest S2 scores (S2 Top5).

Model ID GL NIO WNP ENP NAT SIO SPO SAT

MRI-AGCM A1B

A1 215.8a 211.8 226.8a 214.5 15.6 24.8 234.9a 27.7

A2 218.8a 118.0 211.7 230.5a 14.2 28.9 233.7a 238.5

A3 229.0a 22.8 226.0b 224.7a 214.2 232.7a 262.8a 150.0

A4 21.2 122.1 218.5b 117.3c 156.7a 217.0b 214.3c 111.1

B1 216.9a 210.6 219.0b 24.4 221.1b 223.6b 230.4a 144.4

B2 225.0a 216.0 229.5a 212.9 245.4a 225.4a 224.5b 230.0

B4 223.0a 216.0 222.5a 225.3b 236.5b 230.8a 219.5b 1200.0b

C2 217.5a 230.5a 224.2a 26.2 228.8b 223.8a 24.5 1116.7c

D2 216.8a 10.9 213.3 217.8 212.5 224.2a 231.8a 1100.0

E2 20.4 19.2 17.9 165.3a 225.0c 226.3a 28.2 191.7c

EQW 216.4a 24.1 217.1a 212.0c 213.9 221.6a 225.0a 139.7b

RBTC # 0.5 217.6a 27.3 217.3a 215.6b 214.3 222.8a 229.9a 158.3

S2 Top5 215.1a 210.0 214.1b 218.6a 213.9 225.9a 225.1a 159.7a

CMIP5 RCP4.5

1 27.0b 24.4 18.6 26.6 226.9 214.5b 211.6 273.5a

2 25.0c 12.6 20.9 127.6a 213.4 220.9a 218.7a 245.2a

3 210.1a 224.4b 211.0c 20.6 220.6c 211.9b 28.4c 25.6

4 215.8a 120.5c 13.6 226.0b 246.2b 236.1a 219.2b 0.0

5 216.0a 121.1 22.0 115.5 216.3 229.7a 230.8a 242.1

6 215.6a 26.1 214.6a 126.8b 219.2 227.1a 226.1a 150.0

7 223.3a 23.9 233.2a 226.8a 213.9 221.6a 230.2a 14.0

8 26.6b 21.7 25.4 16.8 228.2b 29.3 27.7 213.2

9 23.4 214.1 22.3 131.4a 230.2b 214.1b 19.9 226.2b

10 22.0 110.3 17.1 112.9 114.3 215.8a 23.2 229.6

11 20.5 211.3 11.7 10.6 114.7 26.0 16.7 247.1c

EQW 29.6a 23.1 23.4 15.0b 220.6a 219.8a 212.8a 222.2a

RBTC # 0.5 214.8a 27.0 25.0c 14.3 220.6c 219.8a 224.0a 150.0

S2 Top5 213.3a 23.1 20.7 17.5b 221.9a 218.0a 213.5a 227.6a

CMIP5 RCP8.5

1 17.8b 21.8 112.3 138.6a 246.2a 20.9 213.8 241.2c

2 133.5a 197.4a 129.7a 1101.5a 11.8 215.3a 117.1a 218.3

3 219.7a 228.6b 226.0a 214.2c 214.3 222.4a 213.8a 213.6

4 221.6a 11.7 25.0 21.1 255.8b 247.4a 211.7 271.4c

5 235.5a 11.8 219.4a 29.1 240.7a 251.5a 246.8a 242.1

6 240.4a 236.4b 226.2a 214.8c 223.1 257.2a 249.6a 225.0

7 232.3a 10.4 247.1a 234.9a 212.7 237.3a 234.9a 232.0

8 214.9a 227.5a 212.1b 121.5b 254.6a 226.5a 215.8c 218.2

9 213.2a 236.5a 215.8a 130.8a 248.6a 223.6a 12.2 221.5

10 22.4 128.7b 12.0 123.3b 132.1 224.1a 15.7 233.3

11 15.6b 112.6 111.3c 14.5 25.9 26.9 112.4b 223.5

EQW 212.1a 12.8 27.3a 117.0a 228.9a 230.8a 214.4a 222.2a

RBTC # 0.5 215.4a 215.0a 26.7a 112.3a 240.7a 233.1a 239.4a 271.4c

S2 Top5 217.9a 115.7a 23.2 116.0a 228.4a 225.7a 224.4a 220.4a

a Statistically significant at 99% level.
b Statistically significant at 95% level.
c Statistically significant at 90% level.
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signs of the future changes are inconsistent among the

CMIP5 models. The results of both the MRI-AGCMs

under A1B scenario and CMIP5 models under the

RCP4.5 scenario tend not to show significant and ro-

bust changes in TC genesis frequency and FOCs in

the NIO, NAT, and SAT relative to changes in other

ocean basins.

c. Relationships between model bias and projected
future changes in FOCs

As shown in Fig. 1, the spatial distribution of pro-

jected future changes in FOCs may, in certain circum-

stances, be approximately correlated with that of model

biases. Figure 4 shows spatial correlation coefficients

TABLE 3. As in Table 2, but for projected future changes in basin-total FOCs. Boldface and italic fonts indicate the magnitude of the ratio

of bias term to total future change (i.e., jRBTCj # 0.25 and #0.5, respectively).

Model ID GL NIO WNP ENP NAT SIO SPO SAT

MRI-AGCM A1B

A1 28.9c 27.6 220.8c 10.1 116.0 22.4 237.9a 29.6

A2 216.2a 111.5 26.5 225.5a 14.1 212.2 235.7a 241.6

A3 227.0a 18.4 223.1b 218.2b 21.6 239.5a 262.5a 132.9
A4 21.3 128.3c 221.6b 130.9a 167.8a 226.6a 26.0 22.1

B1 221.0a 220.8c 226.7a 12.0 217.3 226.5b 242.8a 28.7

B2 230.8a 222.2b 237.5a 25.0 251.8a 230.7a 232.1a 21.2

B4 230.4a 218.4 233.4a 229.5b 242.0b 236.1a 226.9a 1314.9b

C2 216.4a 232.1a 228.3a 23.3 219.5 217.8b 21.1 1132.1c

D2 211.5a 19.6 28.2 216.3 220.2 215.5b 228.3a 1135.7

E2 23.0 10.3 19.6 151.3a 232.8b 224.0a 27.3 1181.9c

EQW 216.4a 25.4 218.7a 24.9 212.8 221.5a 227.1a 149.2b

RBTC # 0.5 217.0a 27.9 219.1a 29.2 212.3 223.4a 233.7a 147.5

S2 Top5 215.6a 29.1 216.5b 29.2 211.5 225.6a 227.2a 183.4a

CMIP5 RCP4.5

1 25.8 16.0 14.0 25.4 229.0 210.4 216.1 280.4a

2 23.3 13.2 16.9 124.3a 26.1 221.9a 215.5a 238.8b

3 210.8a 219.8c 216.6b 25.2 211.7 29.9b 25.8 26.9

4 215.5a 11.8 110.8b 236.5a 248.1a 242.0a 21.4 114.5

5 221.4a 15.9 26.8 113.4 28.5 236.1a 233.1a 242.6

6 223.4a 23.1 217.0a 117.9c 27.8 236.0a 232.4a 146.8

7 229.0a 27.0 239.6a 236.6a 11.5 227.4a 234.4a 13.8

8 28.3a 27.6 29.5 18.8 232.5b 212.0c 24.8 28.8

9 210.0a 219.9b 212.5b 133.6a 239.3a 213.8b 22.9 237.4a

10 22.9 120.4 17.0 119.4c 125.2 217.5a 23.5 238.0

11 10.3 23.0 16.2 216.8 133.4 26.3 13.0 229.4

EQW 211.8a 22.1 23.9 10.5 218.1a 223.4a 214.1a 224.3a

RBTC # 0.5 220.2a 10.8 26.2c 21.4 211.7 223.4a 226.2a 146.8

S2 Top5 217.2a 23.4 12.1 10.4 219.6a 219.6a 217.7a 226.4a

CMIP5 RCP8.5

1 18.7c 117.0c 117.3 138.3a 249.0b 20.2 219.7 252.2b

2 122.8a 175.3a 126.1a 196.9a 17.0 223.0a 13.2 218.2

3 221.3a 227.0b 231.6a 213.5 212.8 222.8a 213.1b 212.6

4 220.6a 216.7 14.5 24.4 263.8a 254.3a 116.8 256.4

5 243.0a 26.6 223.3a 221.2b 239.2b 262.4a 248.8a 242.6

6 248.2a 245.9a 228.7a 227.7a 28.0 266.7a 254.6a 236.1

7 237.2a 21.6 251.1a 238.3a 12.3 246.6a 230.9b 255.4b

8 222.5a 233.4a 223.6a 114.4 262.5a 227.7a 222.8b 229.0c

9 221.9a 240.1a 227.3a 127.4a 258.5a 226.3a 212.8c 233.0b

10 29.9a 131.2c 11.8 121.7c 139.8 231.2a 27.8 236.6

11 19.0a 117.8 121.6a 215.2 135.5 25.1 17.8 29.8

EQW 215.7a 14.0 26.6b 112.7a 228.4a 236.3a 217.4a 227.7a

RBTC # 0.5 219.2a 212.7b 27.5b 19.2a 239.2b 239.4a 242.0a 256.4

S2 Top5 223.9a 110.6b 21.0 111.3a 229.1a 229.1a 228.8a 222.4b

a Statistically significant at 99% level.
b Statistically significant at 95% level.
c Statistically significant at 90% level.
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between themodel biases and projected future changes

in FOCs for each model and for each ocean basin.

Overall, the sign of the correlation depends on the

model and ocean basin considered. When the MRI-

AGCMs under the A1B scenario are compared with

one another (i.e., left side of each panel in Fig. 4), the

signs of the correlations vary depending on the model

version and the cumulus convection scheme used, rather

than on model resolutions. The CMIP5 models show

similar correlations between RCP4.5 and RCP8.5.

This means that both RCP4.5 and RCP8.5 show sim-

ilar future changes in FOC: projected future changes

in spatial distribution of FOC may be independent of

emission scenarios. Regardless of emission scenarios,

CMIP5 models tend to show significant negative cor-

relations in the GL, NIO, SIO, SPO, and SAT, except

for a few outliers. For all experiments, the correlations

are generally stronger and more significant in the

FIG. 4. Correlations between spatial distributions of model bias and projected future changes

in FOCs in each basin (one chart per basin) and for each model (horizontal axes). Red (blue)

bars indicate that the positive (negative) correlation coefficients are statistically significant at

the 95% level (significance test for Pearson’s product–moment correlation). Model IDs are

given in Table 1.
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NIO, SIO, SPO, and SAT than in the WNP, ENP, and

NAT.

To reveal the quantitative contributions of the five

factors in Eq. (4) to the projected future changes in basin-

total FOCs, the contribution of each term was integrated

over individual ocean basins, as shown in Fig. 5. For the

MRI-AGCMs under the A1B scenario, the TC genesis

effect (Gs) is the primary contributor to the projected

total FOC change, indicating that projected changes in

FOCs are proportional to the changes in FOGs, as also

indicated by the results presented in Tables 2 and 3.

The contribution of the nonlinear effect (Ns) is less

than that of other terms, except in the SAT. The sum of

signal terms (blue bars) is greater than that of bias

terms (red bars), except in the SAT, indicating that the

influence of model biases on basin-total FOC changes

is small in the MRI-AGCMs. Patterns in the results of

the CMIP5 models are similar to those observed in the

MRI-AGCMs; however, the degree to which terms

contribute to the basin-total FOC changes varies from

model to model (e.g., models 4–7 show large contribu-

tions of the TC genesis effect in the GL, SIO, and SPO,

whereas its contribution in other models is smaller).

Moreover, the relative contribution of Tb or Gb (in

terms of which is greater) varies according to the model

and the ocean basin. The difference between the RCP4.5

and RCP8.5 scenarios is mostly small qualitatively, in-

dicating that the contributions of each term to the total

change are independent of emission scenarios. For

the CMIP5 models showing increases in global FOCs

under the RCP8.5 scenario (i.e., models 1, 2, and 11),

each term contribution is different among the models.

Model 2 shows the largest positive contribution from

the signal of future change due to the TC genesis effect

(Gs) in the three basins of GL, NIO, andWNP.Model 1

tends to show larger positive contributions from the

model bias due to the TC track effect (Tb). In addition,

the largest contribution in model 11 is Gs or signal of

future change due to the TC track effect (Ts) in the

three basins.

To show experimental variance in the degree of in-

heritance of model biases in the total change, Fig. 6

shows box plots of the values of the RBTC for the dif-

ferent ensembles and ocean basins. The overall sign of

the median is consistent among the emission scenarios

for each basin. For the GL, all experiments tend to show

negative RBTC; the median of the RBTC is approxi-

mately 20.10 for all models, indicating that approxi-

mately 10% of the total future changes in FOCs are

influenced by the model bias terms. The RBTCs are

smaller in the SIO and SPO (,20%), which may be the

result of marked future changes and, in part, to reduced

model biases in these basins. Relatively large RBTCs are

observed in theNAT and SAT, whichmay be the result of

larger model biases in the FOCs in these basins. Positive

RBTCs are observed in the NIO and SAT, indicating

(from Fig. 2) that the models tend to overestimate

projected future changes in these basins. In contrast,

negative RBTCs are observed in the GL, WNP, ENP,

and NAT, indicating that the models tend to under-

estimate projected future changes in these basins.

We examined how the bias terms are related to the

performance of present-day simulations. Figure 7 reveals

a relationship between the RBTC and the mean error

(ME) of simulated present-day climatological FOCs

relative to observations. The plots are eccentrically lo-

cated in the first quadrant (ME . 0 and RBTC . 0) in

the NIO, SIO, and SAT, indicating that, when a model

overestimates the basin-total FOCs in the present-day

simulation, themodel also overestimates projected future

changes in basin-total FOCs, regardless of the sign of the

future changes and emission scenarios. The plots are also

eccentrically located in the third quadrant (ME , 0 and

RBTC, 0) in the GL, WNP, ENP, and NAT, indicating

that, when a model underestimates the basin-total FOCs

in the present-day simulation, the model also underes-

timates projected future changes in basin-total FOCs.

We examined how the bias terms affect the statistical

significance of the projected future changes in FOCs.

Figure 8 reveals relationships between the RBTCs and

p values of the projected future changes. The numerous

points have aV-shaped distribution and are locatedwithin

the area of gray shading in the figure. This indicates that,

when the bias terms are small relative to the total change,

the total change tends to be statistically significant. In

other words, to derive significant changes in FOCs in the

future, model performance in the present-day simulation

is critical.

d. Ensemble means using reliable models

The above analyses indicate that future changes pro-

jected by the models with smaller bias terms may bemore

reliable than thosewith larger bias terms on account of the

smaller inheritance of biases by the projected future

changes. On this basis, it may be reasonable to use the

ensemble mean approach to analyze the data. With this

approach, models with smaller bias terms are weighted

more heavily in the generation ofmean future projections.

At the bottoms of Tables 2 and 3, the ensemble means

of changes in TC genesis frequencies and FOCs for each

emission scenario are listed, according to different en-

semble approaches [e.g., all models equally weighted

(EQW), models with smaller bias terms (RBTC # 0.5),

and models with the five highest S2 scores (S2 Top5)].

Table 3 also provides information on the ratio of the bias

terms to the total future change in FOC (i.e., RBTC);
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the RBTC value may contribute useful information on

the reliability of the projected future change. The en-

semble mean result using EQW tends to show a higher

level of significance when compared to individual ex-

periments when most of the experiments show the same

sign of the future change. When the ensemble mean is

computed using RBTC# 0.5 for the MRI-AGCMA1B

scenario, the mean value is not so different from either

EQW or S2 Top5, implying that weighing has a lower

impact on results. This is consistent with findings of

previous studies that unequal weights do not show sig-

nificant improvement over equal weights (DelSole et al.

2013), although equal weights may be the safer andmore

transparent way to combine models (Weigel and Knutti

2010). However, the future change using RBTC # 0.5

becomes less significant (p 5 0.24) in the SAT, where

models systematically overestimate FOCs, leading to

more reliable future projections in terms of statistical

FIG. 5. The contribution of each term to the total change in FOC in each ocean basin (units:

number per year). Factors that influence FOC changes are 1) the signals of future changes due

to the TC track effect (Ts), TC genesis effect (Gs), and nonlinear effect (Ns) and 2)model biases

due to the TC genesis effect (Tb) and the TC tracks effect (Gb). Blue bars represent terms for

the signal of future changes, and red bars represent terms related to the biases (see the legend at

the bottom of the figure).
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significance. The degree of inheritance of model biases

in the total change in FOCs is also smaller for RBTC #

0.5 comparedwith other ensembles. The ensemblemean

with RBTC# 0.5 shows 7, 7, and 8 ocean basins showing

RBTC , 0.25 for MRI-AGCM A1B, CMIP5 RCP4.5,

and CMIP5 RCP8.5, respectively. The ensemble mean

with EQW(S2 Top5) shows 6, 6, and 5 (7, 4, and 4) basins

showing RBTC , 0.25 for each scenario. This indicates

greater confidence in the quantitative discussion on fu-

ture changes using ensemble approach with RBTC# 0.5

compared with other ensemble approaches.

Overall, significant decreases in the basin-total FOCs

and TC genesis frequencies are limited to theGL,WNP,

SIO, and SPO for the MRI-AGCM A1B scenario. The

CMIP5 RCP4.5 scenario obtains mostly similar results

except that NAT tends to show statistically more sig-

nificant (p 5 0.0–0.09) changes in both ensemble ap-

proaches for TC genesis number. Themarked difference

between the ensemble approaches for CMIP5 RCP4.5 is

the degree of changes in GL, SPO, and NAT: RBTC #

0.5 and S2 Top5 show larger negative changes than

EQW in the GL, and RBTC# 0.5 shows larger negative

changes than EQW and S2 Top5 in the SPO. This is

mainly because selected models where RBTC # 0.5

(e.g., models 4, 5, 6, 7, and 9 for GL and models 1, 2, 5, 6,

and 7 for SPO) showmarked projected decreases in both

FIG. 5. (Continued)
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TC genesis frequency and FOCs (Tables 2, 3). Similar

differences between the ensemble approaches are also

seen in CMIP5 RCP8.5. Moreover, the difference is also

clear in the NIO, where both EQW and S2 Top5 show

projected future increases, whereas RBTC # 0.5 shows

significant (p 5 0.0–0.016) decreases. This is mainly

because the ensemble withRBTC# 0.5 does not include

model 2, which shows marked increases in TC genesis

frequency and FOCs in the NIO.

Figure 9 shows the spatial distribution of the projected

future changes in FOCs using the ensemble mean ap-

proaches (note that the models with RBTC# 0.5 and S2
Top5 used to calculate the ensemble mean are different

for each ocean basin); the regions of enhanced reliability

in the projected future changes are shaded white (i.e.,

statistically significant changes with reduced inheritance

of model biases in the future changes). The difference

between the ensemble approaches is small qualitatively;

however, the ensemble mean using RBTC # 0.5 shows

larger decreases in FOCs in the SPO compared with that

using EQW and S2 Top5 as discussed previously.

The results from Fig. 9 also showmostly robust spatial

patterns regardless of the emission scenarios. The pro-

jected reductions in FOCs are significant in the WNP

(p 5 0.007–0.05), SIO (p 5 0.003–0.02), and SPO (p 5
0.006–0.04), which is consistent with previous studies

FIG. 5. (Continued)
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FIG. 6. Box plots of the ratio of the bias terms to the projected future change for each basin. Each panel shows

ensemble approaches using the MRI-AGCM A1B, CMIP5 RCP4.5, and CMIP5 RCP8.5, and the combined data of

bothmodels (all). The boxes represent the lower and upper quartiles, the horizontal lines show themedian value, and

the dashed bars show the lowest datum still within the 1.5 interquartile range (IQR) of the lower quartile and the

highest datum still within the 1.5 IQR of the upper quartile. Outliers are omitted in the plots, as data points do not

appear to be represented in the plots.
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FIG. 7. Scatter diagrams showing the relationships between the mean error in the FOC in the present-day simu-

lations and the ratio of the bias term to the basin-total projected future change in each basin. Red (blue) dots indicate

that the model projects a decrease (increase) in the basin-total FOC. Symbols indicate experiments by MRI-AGCM

A1B (circles), CMIP5 RCP4.5 (triangles), and CMIP5 RCP8.5 (squares).
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FIG. 8. Relationship between the ratio of the bias term to the basin-total future change and the p value [log(1 1
p value)] for the projected future change in the basin-total FOC. Red dashed lines indicate significance levels of 90%,

95%, and 99%. The gray shading indicates that the projected future change is statistically significant and that the

changes contain fewer model biases (jRBTCj, 1.0). Note that a few points plotted outside of the region (because of

the large RBTC) are not shown in the figure.
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(Knutson et al. 2010; Murakami et al. 2012a). An east-

ward shift in themaximumdensity of FOCs in theWNP,

which has been noted previously (Yokoi and Takayabu

2009;Murakami et al. 2011; Yokoi et al. 2012;Mori et al.

2013), can be recognized for all emission scenarios. The

FOC changes near Japan, however, are inconsistent

between the MRI-AGCM and CMIP5 models. The

ensemble mean results also robustly show a projected

westward shift in the maximum density of FOCs in the

NIO (i.e., an increase in FOCs in the Arabian Sea and

a decrease in FOCs in the Bay of Bengal), a trend that

was also reported by Murakami et al. (2013a). An

eastward shift in the maximum FOCs in the NAT, as

discussed in previous studies (Murakami and Wang

2010; Colbert et al. 2013), is only apparent in the MRI-

AGCM A1B scenario but with less significance (p 5
0.3), although all of the emission scenarios robustly

show a projected decrease in FOCs in the Caribbean

Sea. Recently, Murakami et al. (2013b) reported a

projected increase in FOCs over the central subtropical

Pacific (in the vicinity of the Hawaiian Islands), a trend

that is also predicted in all experiments regardless of

emission scenarios.

In summary, the following projected future changes in

FOCs appear to be the most significant and reliable on

the basis of our analysis: decreases in FOCs in the Bay of

Bengal, WNP, eastern portion of the ENP, Caribbean

Sea, SIO, and SPO and increases in FOCs in theArabian

Sea and subtropical central Pacific.

4. Summary

In this study, the inheritance of model biases by the

results of projected future changes in FOCs was in-

vestigated using a new empirical statistical analysis. We

based our results on 25-yr present-day simulations and

future projections for the last quarter of twenty-first

century from 10 MRI-AGCMs under the A1B scenario

and 11 CMIP5 models under the RCP4.5 and RCP8.5

scenarios.

Overall, the models project statistically significant

decreases in basin-total FOCs and TC genesis frequen-

cies globally (by 15%–29% for A1B; by 6%–23% for

RCP4.5; and by 13%–40% for RCP8.5) and the South-

ern Hemisphere ocean basins showed a marked de-

crease compared with the Northern Hemisphere ocean

basins, a result that is consistent with previous studies

(e.g., Knutson et al. 2010). Most of the MRI-AGCMs

under the A1B scenario project significant reductions

in TC genesis frequencies and basin-total FOCs in the

WNP and ENP; however, the degree and extent of

the changes projected by themodels vary widely. On the

other hand, CMIP5 modes under RCP4.5 and RCP8.5

show diverse results in the WNP and ENP: even the

mean change sign is different among models, indicating

that projected future changes in FOCs at basin scale are

model dependent and remain uncertain.

Spatial correlation coefficients between model biases

in FOCs and projected future changes reveal that the

FIG. 9. Ensemble means of projected future changes in the FOC by MRI-AGCMs under A1B scenario, using (a) all models equally

weighted, (b) the models with RBTC # 0.5 in each basin, and (c) the top five S2 models in each basin. (d)–(f) As in (a)–(c), but for

CMIP5 RCP4.5. (g)–(i) As in (a)–(c), but for CMIP5 RCP8.5. For the ensembles, except for EQW, the composite was constructed

from the mean values for each basin but the means were calculated using different models in each basin. The white shading indicates

regions with a statistically significant change (at the 90% confidence level or above, as determined by the bootstrap method) and gives

an indication of the lower bias term as compared with the total future changes (i.e., RBTC # 0.5). Unit: number per year.
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sign of the correlation varies according to the model

version: namely, model physics for MRI-AGCMs under

the A1B scenario, which indicates a large impact by

model physics on results. The CMIP5 models robustly

show negative correlations in the GL, NIO, SIO, SPO,

and SAT. The correlations are similar between RCP4.5

and RCP8.5 scenarios, indicating that spatial patterns of

projected future changes in FOCs are independent on

emission scenarios.

A newly developed empirical statistical analysis was

used to investigate the quantitative contribution of five

factors to the projected future changes in basin-total

FOCs. Most of the experiments show larger contribu-

tions from the term related to signals of future changes

by TC genesis frequency than from other terms, in-

dicating that projected changes in TC genesis frequency

is the primary contributor to the projected changes in

basin-total FOCs. The analysis of the ratio of the sum-

med magnitudes of the bias terms to the magnitudes of

the total future change in FOCs (RBTC) reveals that

approximately 10% of the total future change in global

FOC is influenced by model biases in the present-day

simulations. The inheritance of model biases is less in

the SIO and SPO (,20%), which suggests that projected

future changes in FOCs in these basins are more reliable.

The analysis also indicates that projected future changes

in FOCs tend to be overestimated by the models in the

NIO (by approximately 118%) and SAT (1143%),

whereas they tend to be underestimated in the WNP

(227%), ENP (229%), and NAT (253%).

We investigated the relationship between the RBTC

and the mean error of simulated present-day climato-

logical FOCs. The results indicate that, when a model

overestimates (underestimates) FOCs in the present-day

simulations, the model also overestimates (underesti-

mates) future changes in FOCs. We also investigated

the relationship between the RBTC and the statistical

significance of the projected future changes in basin-

total FOCs. Our results imply that minimizing model

biases in present-day simulations is critical to deriving

significant signals of future changes.

Finally, an ensemble mean analysis was conducted to

obtain more reliable projections, using 1) an equally

weighted ensemble mean, 2) models with smaller bias

terms, and 3) models with the five highest S2 scores.

Overall, on the basis of the ensemble mean results, the

following projected future changes appear to be most

significant and reliable: decreases in the FOCs in the Bay

of Bengal, WNP, eastern portion of the ENP, Caribbean

Sea, SIO, and SPO and increases in FOCs in theArabian

Sea and subtropical central Pacific.

Our study did not consider biases in the future projec-

tions resulting from an absence of observed information

in the future. An investigation of these biases might be

important in order to determine whether a model pre-

serves the same (or similar) biases observed at present

in the different climate regimes or under different rates

of anthropogenic/natural forcings. However, observa-

tions of global TC tracks are limited prior to the com-

mencement of satellite-based observations in the 1970s.

This is a topic to be addressed in future studies.

Our study also did not consider differences in TC-

detection schemes, which may introduce some uncer-

tainties into projected future changes. For example,

Camargo (2013) shows relative increases in projected

global TC genesis frequency for a few CMIP5 models

(MPI-ESM-LR and MRI-CGCM3) for both the RCP4.5

and RCP8.5 scenarios based on the use of the detection

algorithm of Camargo and Zebiak (2002), although these

changes are not statistically significant. Our detection

algorithms, however, do not show such increases for these

models. Tory et al. (2013) also analyzed TC genesis fre-

quencies for the CMIP5 models under the RCP8.5 sce-

nario using a unique TC-detection method incorporating

large-scale TC formation conditions. They reported that

eight reliable CMIP5 models commonly project de-

creases in global TC frequency. However, as pointed out

by Tory et al. (2013), a large number of higher latitude

TCs (e.g., subtropical systems) were detected in the late

twenty-first century under the RCP8.5 scenario without

any inclusions of adjustments for their detection method.

If these subtropical systems were included, the results

might mislead researchers to conclude an increase in

global TC frequency.

Apart from the differences in TC-detection methods,

Emanuel (2013) recently reported, using a statistical–

dynamical downscaling technique, that downscaling

CMIP5 models under the RCP8.5 scenario robustly pro-

jects increases in global TC frequency, whereas down-

scaling CMIP3 models under the A1B scenario robustly

projects decreases in global TC frequency. These uncer-

tainties in differences in TC-detection methods, emission

scenarios, and model framework should be further clari-

fied to obtain more reliable projections of future changes

in TC activity.
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