
1.  Introduction
Rational measures to mitigate any risk must start from an assessment of that risk. Historical records can provide 
guidance, but in the case of atmospheric hazards such as hurricanes, we know that historical records are only a 
starting point for assessing current and future risk. This is both because the historical record is too short to fully 
sample the possibilities even in a stationary climate, and because the climate is changing (D. Chan et al., 2022; 
Emanuel, 2021; Schreck et al., 2014). Climate change makes the present different from the past, and requires 
us to consider whether the historical record alone—or catastrophe models that are built upon it—using purely 
statistical methods and assuming a stationary climate, are adequate, or need to be modified or supplemented to 
account for climate change.

Abstract  This manuscript discusses the challenges in detecting and attributing recently observed trends 
in the Atlantic tropical cyclone (TC) and the epistemic uncertainty we face in assessing future risk. We use 
synthetic storms downscaled from five CMIP5 models by the Columbia HAZard model (CHAZ), and directly 
simulated storms from high-resolution climate models. We examine three aspects of recent TC activity: the 
upward trend and multi-decadal oscillation of the annual frequency, the increase in storm wind intensity, and 
the decrease in forward speed. Some data sets suggest that these trends and oscillation are forced while others 
suggest that they can be explained by natural variability. Projections under warming climate scenarios also show 
a wide range of possibilities, especially for the annual frequencies, which increase or decrease depending on the 
choice of moisture variable used in the CHAZ model and on the choice of climate model. The uncertainties in 
the annual frequency lead to epistemic uncertainties in TC risk assessment. Here, we investigate the potential 
for reduction of these epistemic uncertainties through a statistical practice, namely likelihood analysis. We find 
that historical observations are more consistent with the simulations with increasing frequency than those with 
decreasing frequency, but we are not able to rule out the latter. We argue that the most rational way to treat 
epistemic uncertainty is to consider all outcomes contained in the results. In the context of risk assessment, 
since the results contain possible outcomes in which TC risk is increasing, this view implies that the risk is 
increasing.

Plain Language Summary  We use a set of computer model simulations to study recent trends in 
Atlantic tropical cyclones. We looked at three aspects of these storms: the number of tropical cyclones each 
year, which has fluctuated up and down over time (but generally increased over the last several decades); 
the strength of their winds, which has been increasing; and the speed at which they move, which has been 
decreasing. These trends could be caused either by human-induced global warming or by natural variability; 
determining which cause is more important to overall risk requires us to understand how the number of tropical 
cyclones per year responds to warming. In our simulations, this number can either increase or decrease with 
warming, depending on which of two nearly identical versions of our model we use to simulate the storms. 
This uncertainty prevents us from reaching definitive conclusions about either present or future hurricane risk. 
Nonetheless, our analysis suggests that the risk of Atlantic tropical cyclones is more likely increasing than 
decreasing, and we argue that from a broader point of view, this is effectively equivalent to saying the risk is 
increasing.
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Accounting for climate change is likely to require a greater use of physics than is historically typical in catastro-
phe models (Emanuel, 2008; Toumi & Restell, 2014). While one might instead try to assess the risk by using 
standard statistical methods but training only on the most recent observations (as opposed to the entire record), 
in the hope that those most recent observations represent the present and near-future climate adequately, this is 
likely to be challenging. Since hurricanes are rare, the number in the record over a period recent enough for this 
purpose is too small for risk assessment—especially when we also consider that low-frequency natural variability 
is present (i.e., J. C. Chan, 2008; Klotzbach & Gray, 2008; Wang et al., 2015), so that averaging times must be 
longer than might otherwise be necessary. To make the best possible assessment of present hurricane risk, then, 
we need to use our knowledge of the physics that connects hurricanes and climate (Emanuel, 2008).

The focus of this study is Atlantic tropical cyclone (TC) risk in the present and near future. Future projections are 
useful for understanding how TCs may respond to climate changes of various sorts. Studies of historical obser-
vations, on the other hand, often look for trends; but on their own, such studies do not establish the causes of the 
trends, nor whether they will persist. Establishing whether a trend is present (detection) is generally viewed as a 
prerequisite to determining its cause (attribution) (Lloyd & Oreskes, 2018). Detection can, in principle, be done 
with observations alone; attribution requires a model of some sort, in order to construct a counterfactual where 
the cause of interest is not present (Hegerl & Zwiers, 2011; Knutson, 2017). If a historical trend (or an oscillatory 
signal) could be both detected and attributed to a specific cause, such as human influence, or alternatively some 
specific natural process, this would be of great scientific value, and would also allow us some insight into what 
to expect in the near future.

To develop such insight for Atlantic TCs, we will use recent observations and model simulations from histor-
ical (present), projected near future (up to 2040 or 2050), and pre-industrial periods. Simulations from the 
pre-industrial period incorporate no anthropogenic forcing and thus are used as a counterfactual. We use two 
types of model data. The first represents synthetic storms generated from a statistical-dynamical model, the 
Columbia (TC) HAZard model (Columbia HAZard model (CHAZ)), a model that encodes physical relationships 
between tropical cyclones and their ambient large-scale environment (Lee et al., 2018). The second represents the 
directly simulated hurricanes from high-resolution global models, in which the above-mentioned relationships 
are simulated intrinsically (Roberts et al., 2020a, 2020b; Wehner et al., 2014; Yoshida et al., 2017).

There are three objectives of this work. The first is to examine whether recently reported trends can be attrib-
uted to anthropogenic forcing. As summarized in Knutson et  al.  (2020a, 2020b), these trends are the recent 
variability of Atlantic annual TC frequency (Emanuel, 2007), an upward trend in the intensification rate (Bhatia 
et al., 2019) and lifetime maximum intensity (LMI) (Kossin et al., 2013), and a slowing-down in the storm motion 
(Kossin, 2018). In particular, the cause of the recent increasing trend (since 1970) in Atlantic TC activity has been 
a subject of debate. On the one hand, reduced aerosol forcing over the Atlantic since 1980s has been argued to be 
a dominant cause of the increasing TC activity in late 20th century (Mann & Emanuel, 2006; Rousseau-Rizzi & 
Emanuel, 2020; Sobel, Camargo, & Previdi, 2019). On the other hand, several measures of Atlantic TC activity, 
including the major hurricane (TCs with LMI ≥93 kt) frequency (Goldenberg et al., 2001), are highly correlated 
to the Atlantic Multi-decadal Oscillation (AMO) or Atlantic multidecadal variability, a low-frequency mode 
of variability identified by the average sea surface temperature (SST) anomalies in the North Atlantic basin, 
typically over 0–80 oN (Ting et al., 2011). The recent AMO cycle, including both the upward trend from 1970 to 
2005 and the downward trend from 2006 to 2018 have been associated by some authors with natural variability 
(e.g., Yan et al., 2017, and others). However, studies using CMIP5 historical runs simulated an ensemble-mean 
AMO that is significantly correlated with the observed AMO, suggesting that the recent historical variability 
could be a consequence of radiative forcing (Bellomo et al., 2018; Clement et al., 2015). The future projections 
of TC frequency are subject to a similar degree of debate. Many studies have suggested that the future should 
see a decline in the numbers of Atlantic TCs with warming (e.g., Knutson et al., 2010, and others), with a few 
exceptions (Bhatia et al., 2018; Emanuel, 2013; Vecchi et al., 2019).

The second objective is to compare historical simulations with observations to understand which modeling data 
set is more consistent with the observations (Brunner et al., 2020). Such analysis can provide guidance whether 
to favor one model over another, which is especially useful for reducing uncertainty when the projections cover 
a wide range even with an opposite sign, such as the projections of the divergent scenarios in global TC genesis 
(i.e., Lee et al., 2020; Sobel et al., 2021). Lastly, we will assess hurricane risk over a set of selected gates, which 
can be a sections of coastline or area of interest (represented using line gates) in the present and future climates. 
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Strictly speaking, risk includes severity of the hazard, exposure, and vulnerability of the properties of interest. 
Only the hazard component is examined here.

2.  Data, Experimental Design and Method
2.1.  Tropical Cyclone Data Sets

2.1.1.  Observations

For reference, we use 6-hourly storm positions (longitude and latitude) and maximum wind speeds (in knots) 
from best-track data generated by the National Hurricane Center and obtained via the International Best Track 
Archive for Climate Stewardship v04r00 (IBTrACS Knapp et al., 2010) from 1951 to 2020. IBTrACS data have 
some limitations. First of all, due to the limited availability of satellite imagery and the Dvorak Technique for 
systematic image analysis, the IBTrACS data set for the 1950s and 1960s may have missed some storms (Vecchi & 
Knutson, 2008). Second, the intensity of extreme hurricanes may be underestimated from the 1940s to the 1960s 
(Hagen & Landsea, 2012). Furthermore, advancements in observational capabilities (Villarini et al., 2011) have 
led to an increase in the detection of short-duration and typically weaker tropical storms (Landsea et al., 2010). 
To address these limitations, we only consider storms, including subtropical cyclones, that reached tropical storm 
strength, with a lifetime maximum intensity (LMI) of at least 34 knots, and that stayed at 34 knots and above 
for a duration of at least 2 days (excluding weak and short-duration storms). When conducting trend analysis (in 
Section 2.4 and Section 3), we discuss uncertainties associated with observations using more recent data (1960–
2020 and 1970–2020). It should be noted that the modeling data discussed below also incorporate the intensity 
and duration threshold to exclude short-duration storms. Throughout this study, the term “tropical cyclones” 
refers to storms with a LMI of at least 34 knots, while “hurricanes” are storms with a LMI of at least 64 knots. 
Storm forward motion is derived from position data.

2.1.2.  Synthetic Events From the CHAZ Model

The first set of model TCs used here consists of synthetic storm tracks from the Columbia (TC) Hazard (CHAZ) 
model (Lee et al., 2018). CHAZ is a statistical-dynamical downscaling model that generates synthetic storms 
whose properties depend on environmental conditions. The environmental conditions can come from an 
observation-based reanalysis or a global climate model. The downscaling is one-way; there is no feedback from 
downscaled TC activity to the global models. Three components in CHAZ describe storm formation and subse-
quent evolution until shortly after landfall (or dissipation): the cyclone genesis index (TCGI; Tippett et al., 2011), 
the beta-advection track model (Emanuel, 2008), and an auto-regressive intensity model (Lee et al., 2015, 2016). 
Details about CHAZ are reported in Lee et al. (2018). The environmental variables required by the model are 
Potential Intensity (Bister & Emanuel, 1997), deep-layer (850–250 hPa) vertical wind shear, and one or more 
moisture variables: column integral relative humidity (CRH) and/or column integral saturation deficit (SD), 
the absolute vorticity at 850 hPa, and the steering flow. The choice of moisture variables will prove particularly 
important in what follows. Both variables are calculated following Bretherton et al. (2004). The simulated TC 
activity in CHAZ, at global and basin scales, in both current and projected future climates have been discussed 
in detail in Lee et  al.  (2018, 2020), respectively. The CHAZ model has been used for case studies in Texas 
(Hassanzadeh et al., 2020), New York (Lee et al., 2022), Mumbai, India (Sobel, Lee, et al., 2019) and the Philip-
pines (Baldwin et al., 2023). Meiler et al. (2022) found that losses estimated from CHAZ are comparable to those 
estimated using comparable TC hazard models from Emanuel (2013) and Bloemendaal et al. (2020).

In this study, we use CHAZ to downscale five CMIP5 models (Taylor et al., 2012) over the Atlantic basin. They 
are the National Center for Atmospheric Research Community Climate System Model 4 (Gent et al., 2011), the 
Geophysical Fluid Dynamics Laboratory Climate Model version 3 (Donner et al., 2011), the United Kingdom 
Meteorological Office Hadley Center Global Environment Model version 2 Earth System (HadGEM2-ES) (Jones 
et al., 2011), the Max Planck Institute Earth System Model Medium Resolution (MPI-ESM-MR) (Zanchettin 
et al., 2012), and the Model for Interdisciplinary Research Climate Version 5 (Watanabe et al., 2010) from the 
University of Tokyo Center for Climate System Research, National Institute for Environmental Studies, Japan, 
Japan Agency for Marine-Earth Science.

CHAZ's projections of annual TC frequency, both in the Atlantic and globally, are sensitive to whether CRH 
and SD are used in TCGI. Using TCGI with CRH leads to a projected increase in global (and Atlantic) TC 
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frequency, while SD leads to a projected decrease (Lee et al., 2020). CRH and SD both measure the degree of the 
saturation of the atmosphere, with SD being the difference between the column integrated water vapor and the 
same quantity at saturation, and CRH being their ratio. As saturated water vapor increases with temperature in a 
warming climate, CRH remains close to constant and SD decreases (defined as negative, Camargo et al., 2014; 
Lee et al., 2020). In the current climate, however, the behavior of these two variables are qualitatively similar, and 
the two TCGI formulations yield similar results for the historical period, meaning that the historical evidence is 
inadequate to determine which of the two is more correct. Arguably, SD better reflects the increase in the thermo-
dynamic inhibition of TC formation in a warming climate (Emanuel, 1989, 2022), but the gaps in our understand-
ing of the relationship between climate and TC frequency are so substantial that we do not view this argument 
as dispositive (Sobel et al., 2021). The diverging annual frequency projections from CHAZ thus, in our view, 
reflects the broader state of the science, in that we have low confidence regarding whether one should expect 
more or fewer hurricanes as climate warms (i.e., Camargo et al., 2020; Vecchi et al., 2019; Sugi et al., 2020). One 
reason for the low confidence in TC frequency projection is the lack of theoretical understanding of TC genesis, 
and we refer the readers to a review article by Sobel et al. (2021) for a detailed discussion.

Since total TC hazard and risk depend inextricably on TC frequency and we lack a strong basis for choosing 
between SD and CRH, the sensitivity to the humidity variable in our results causes a deep uncertainty in the 
projected risk. This uncertainty will remain in the present study, in that we performed separate sets of simulations 
with either CRH or SD as the humidity variable in the genesis module, referred to as CHAZCRH and CHAZSD.

2.1.3.  Directly Simulated Hurricanes From General Circulation Models

In addition to the CHAZ downscaling simulations described above, we use storms tracked in a set of relatively 
high-resolution, that is, TC-permitting, global climate models. The first one is the 60-km MRI-AGCM3.2H 
large-ensemble simulation from Mizuta et al. (2017) (MRI-LENS). Tropical cyclones in that model were tracked 
following Murakami et al. (2012). Thresholds of sea level pressure, 850 hPa relative vorticity, 850 hPa and surface 
wind speed, warm core temperature, and duration period for the TC tracking were chosen in accordance with the 
model characteristics and resolution (see Section 2.4 of Murakami et al. (2012) for detail). Yoshida et al. (2017) 
demonstrated that the MRI-LENS model successfully simulates an annual global TC frequency of 83.2 cyclones 
per year and provides a reasonable global representation. However, the model underestimates the frequency of 
TCs in the North Atlantic region. The second one is the 25-km High-Resolution Community Atmospheric Model 
version 5 simulations, CAM5 (Wehner et  al.,  2014, 2015). TCs in CAM5 are tracked with Geophysical Fluid 
Dynamics Laboratory tracking algorithm using threshold values for vorticity, warm core temperature anomaly, and 
planetary boundary layer depth as in Knutson et al. (2007). Details of the tracking can be found in Appendix B in 
Wehner et al. (2014). Similar to the MRI-LENS model, the 25-km High-Resolution CAM5 produced an average 
of approximately 83 TC per year globally. This model is capable of simulating category 5 tropical cyclones on 
the Saffir-Simpson scale, and its representation of Atlantic tropical cyclones and seasonal cycles aligned well 
with observations. Next, we use storms tracked in the Coupled Model Intercomparison Project Phase 6 (Eyring 
et  al.,  2016) High Resolution Model Intercomparison Project (HighResMIP) (Haarsma et  al.,  2016). Follow-
ing Roberts et al. (2020a, 2020b) and Roberts et al. (2020a, 2020b), we use storms from CMCC-CM2 (Cherchi 
et  al.,  2019), CNRM-CM6 (Voldoire et  al.,  2019), EC-Earth3P-HR (Haarsma et  al.,  2020), HadGEM3-GC3.1 
(Roberts et al., 2019), and MPI-ESM1.2 (Gutjahr et al., 2019). There are two HighResMIP configurations, one is 
forced with prescribed SST while the other is fully coupled. We only use the simulations from the fully coupled 
configuration which allows natural variability to occur freely during the historical period. To understand the sensi-
tivity of model performance to the TC trackers, HighResMIP storms are tracked by TRACK (Hodges et al., 2017) 
and TempestExtremes (Ullrich & Zarzycki, 2017; Ullrich et al., 2021; Zarzycki & Ullrich, 2017), and both event sets 
are used here (see Appendix B in Roberts et al. (2020a, 2020b) for details). For convenience, we label modeled TCs 
from HighResMIP tracked with TempestExtremes as Hi-TempExt and those tracked with TRACK as Hi-TRACK.

2.2.  Experimental Design

Except in MRI-LENS and CAM5, we use model TCs from the historical, near-term future, and pre-industrial control 
(piC, no anthropogenic forcing) scenario simulations. Note that the time range covered in each period varies by model. 
For the historical period, they are 1951–2005 for CHAZCRH and CHAZSD, 1950–2010 for MRI-LENS, 1996–2016 
for CAM5, and 1951–2014 for the two HighResMIP data sets. In the future period, CHAZCRH and CHAZSD contain 
storms from 2006 to 2040 under Representative Concentration Pathway 8.5 (rcp8.5) while HighResMIP storms are 
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from 2015 to 2050 under Shared Socioeconomic Pathways5-85 (ssp585). Both are high-emission scenarios with 
an additional radiative forcing of 8.5 W m −2 by the year 2100 (Riahi et al., 2017) which considers a fossil-fueled 
development. High-emission scenarios are employed to enhance the detection of the potential climate change signal, 
although the scenario makes little difference for the first few decades (Intergovernmental Panel on Climate Change 
(IPCC), 2014; Hawkins & Sutton, 2009; Blanusa et al., 2022). Warming climate simulations for MRI-LENS and 
CAM5 are under a 4°C (Yoshida et al., 2017) and 1.5°C warming (Wehner et al., 2018) scenarios and thus are not 
used here. In piC, the labeling of year is arbitrarily in all data sets as all years are equivalent. The MRI-LENS and 
CAM5 piC simulations are exceptions. In MRI-LENS and CAM5, the observed SST information is prescribed in 
both historical and piC simulations as a lower boundary condition, but the long-term linear trend is removed in the 
piC simulations. In other words, MRI-LENS and CAM5 piC simulations still contain observed variations in SST. 
The piC simulations in MRI-LENS, called “no-warming” in Mizuta et al. (2017) and those in CAM5, following 
“Nat-Hist” in Stone et al. (2019), are designed with an underlying assumption that only the linear trend is anthropo-
genically forced, not the variability. This assumption, as we will discuss in the next Section, is debatable.

In each period, the CHAZ model was used to generate 20 track ensemble members per CMIP5 model and each 
track has 40 intensity ensembles (100 CMIP5 track ensemble members and 4,000 considering intensity ensemble), 
as is possible because the CHAZ intensity module has a stochastic component. Hi-TRACK has seven members 
(five global climate models and two of them have two ensemble members) and Hi-TempExt has six (four global 
climate models and two of them have two ensemble members). MRI-LENS has 100 ensemble members while 
CAM5 has five. The data properties are listed in Table 1.

2.3.  Frequency Adjustment

There are biases in the statistics of all model TCs, because of biases in the models that generate them, including 
the CHAZ model itself as well as the CMIP5 models from which CHAZ obtains its environmental conditions, 

Data Global climate models Resolution Ens Period Annual frequency R[%]

IBTrACs N/A N/A N/A 1951–2020 9.26 46.3

CHAZCRH∕ SD HadGEM2_ES N/A 100 8.8/15.9 26.5/54.7

CCSM4 11/16.1 4.48/40

GFDL_CM3 1951–2005; 2006–2040; piC 16.5/19.1 30.6/63.8

MPI_ESM_MR 29.3/39.4 7.4/76.5

MIROC5 11.9/18.3 14.23/46.6

MRI-LENS MRI–AGCM3.2H 60 km 100 1950–2010; piC 2.3 1.71

CAM5 CAM5 28 km 5 1996–2005; piC 10.9 9.54

Hi-TRACK CMCC-CM2-VHR4 (r1i1p1f1) 25 km 7 5.0 16.4

CNRM-CM6-1-HR(r1i1p1f2) 50 km 21.0 52.4

EC-Earth3P-HR (r1i1p2f1) 50 km 6.8 11.0

EC-Earth3P-HR (r2i1p2f1) 50 km 1951–2014; 2015–2040; piC 6.5 22.3

HadGEM3-GC31-HH (r1i1p1f1) 50 km 21.5 15.2

HadGEM3-GC31-HM (r1i1p1f1) 50 km 19.7 13.2

MPI-ESM1-2-XR (r1i1p1f1) 50 km 4.5 15.7

Hi-TempExt CNRM-CM6-1-HR(r1i1p1f2) 50 km 6 13.4 14.8

EC-Earth3P-HR (r1i1p2f1) 50 km 2 5.82

EC-Earth3P-HR (r2i1p2f1) 50 km 1951–2014; 2015–2040; piC 2 5.1

HadGEM3-GC31-HH (r1i1p1f1) 50 km 13.3 12.7

HadGEM3-GC31-HM (r1i1p1f1) 50 km 12.4 0.56

MPI-ESM1-2-XR (r1i1p1f1) 50 km 0.63 4.8

Table 1 
Data Characteristics
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and the high-resolution global climate models used here. In particular, all models have biases in TC frequency 
(Table 1), and directly simulated hurricanes from high-resolution global climate models have low biases in inten-
sity, in general, as the grid spacings of these models are too coarse to capture the full range of observed hurricane 
strengths (e.g., Moon et al., 2022; Yoshida et al., 2017, and others). Here we address only the frequency biases. 
Specifically, we derive an adjustment by comparing the basin-wide annual TC frequencies of models' historical 
simulations to that of the observations from the same period. The same adjustment is then applied to both histori-
cal and future simulations. Similarly, we compare the annual frequency of the piC simulations to the observations 
to adjust piC's annual frequency. In Lee et al. (2018, 2020), the basin-wide frequency adjustment is a multiplica-
tive factor to ensure that the mean annual frequency over a basin in CHAZ is consistent to that in observations. 
However, some ensemble members of high-resolution global climate models used here, such MRI-LENS, gener-
ate zero TCs in some years. A multiplicative factor would result in larger variability but still have zeros in these 
years, which is unrealistic. Thus, here the basin-wide frequency is adjusted as:

𝑓𝑓adj = 𝜎𝜎obs ×
𝑓𝑓ori − 𝜇𝜇model|ref

𝜎𝜎model|ref

+ 𝜇𝜇obs,� (1)

where f indicates annual frequency (each year) with the subscript indicating after (adj) or before (ori) frequency 
adjustment. μ and σ are the mean and standard deviation of the frequency and the subscript indicates whether it 
is from simulations (model) or observations (obs). As we want to retain the climate change signal, reference μ and σ 
(μmodel|ref and σmodel|ref) for adjusting frequencies in both historical and future simulations in each data set are from 
its respective historical simulation. μobs and σobs are calculated using observations from each data set's respective 
historical period. To adjust the annual frequencies of the piC simulations, μmodel|ref and σmodel|ref are from piC. 
Biases in annual TC frequency of the piC simulations are different to those in the historical simulations. As we 
will discuss later, a basin-wide frequency adjustment may not correct regional biases, because model biases can 
have spatial dependence. When desired, that is, at a local gate for regional risk assessment (in Section 5), we 
apply a multiplicative factor so that the annual frequency of simulated storms with intensity greater than 40 kt 
match that of observations, which is the same as the bias-correction approach used in Lee et al. (2022).

Although the model TC data sets utilized here exhibit biases, each data set has undergone comprehensive eval-
uation as documented in Section 2.2 and Section 2.3 and are suggested to be adequate for investigating TCs and 
climate change. The application of frequency adjustment in this study represents our effort to optimally utilize 
these data sets. An underlying assumption of our approach to bias correction, in common with many climate 
change studies, is that the bias of any given model remains the same in projected future climate periods as it is in 
the present, so that the influence of the projected climate change can still be captured when comparing simula-
tions between future and historical periods. This assumption is analogous to that used to remove climatological 
biases in surface temperature and other quantities from the climate models themselves in global warming projec-
tions, for example, those by the Intergovernmental Panel on Climate Change (Solomon et al., 2007). While this 
assumption of constant biases can be questioned, it is a simple assumption, and there is no empirical basis on 
which to base any more complex assumption one. Still, we will discuss the impacts of frequency adjustments on 
our findings.

2.4.  Trend Analysis

To calculate trends of TC activity, we fit second-order Legendre polynomials:

𝑦̂𝑦 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 +
𝑎𝑎2

2

(
3𝑥𝑥2

− 1

)
, 𝑥𝑥 ∈ [−1, 1]� (2)

to the time series of the variables of interest from observations and model simulations. In Equation 2, x is years 
scaled to interval of [−1, 1], 𝐴𝐴 𝐴𝐴𝐴 represents the fitted variables, the coefficient a1 shows linear trends and a2 shows 
quadratic trends. Considering quadratic trends allows the possibility that the observed multi-decadal variability 
is in fact forced (Bellomo et al., 2018; Clement et al., 2015). Here, we ask whether or not the observed trends 
lie within the ensemble spread from simulations. For example, if the observed trend is outside of the range of 
piC simulations but is within those from historical simulations, then the observed change (e.g., upward trend or 
increasing curvature) is unlikely to have occurred without anthropogenic forcing. When comparing the trends 
between observations and simulations, a1 and a2 are scaled back so that they have units of the variable's unit per 
year (yr −1) and per year square (yr −2), respectively.
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3.  Trend and Multi-Decadal Variability
3.1.  Atlantic TC Frequency

We first examine the Atlantic TC frequency trends in the historical (present) climate and from historical to the 
warming future (i.e., using simulations from both historical and future periods). Figures 1a and 1b show the 
ensemble means of the time series of Atlantic TC frequency, that is, the averaged total number of storms in 
the  basin each year whose maximum sustained winds reach at least 34 kt from each data set. The small wiggles 
may be sampling variability. Figures 1c and 1d show the ensemble spread. By construction, the time-mean annual 
frequency for each data set over its respective historical period will be identical to observations after frequency 
adjustment (Equation 1). The original annual frequency of each data set is shown in Table 1. Before 2000, the 
different simulations are, by eye at least, indistinguishable in their overall envelopes, with none showing any 
particular trend, and the observations (black thick line) lying well within their spread (shown in Figure 1c). After 
2000, the CHAZSD (orange thick line) and CHAZCRH (blue thick line) results begin to diverge, with CHAZSD 
showing a decreasing TC frequency and CHAZCRH showing an increasing TC frequency. It is possible that this is 
related to the fact that the rcp8.5 scenario starts after 2005. The two HighResMIP data sets show no considerable 

Figure 1.  Annual frequency of Atlantic TCs which lifetime maximum intensity reach at least 34 kt intensity threshold from 
1951 to 2020 from best-track data (black), CMIP5 downscaling simulations using CHAZCRH (blue) and CHAZSD (pink), 
25-km high-resolution CAM5 simulations (purple), 60 km MRI-LENS simulations (green), and High Resolution Model 
Intercomparison Project (HighResMIP) simulations from Roberts et al. (2020a, 2020b) and Roberts et al. (2020a, 2020b). 
Storms from HighResMIP are tracked with TRACK (red) and TexmpExtreme (pink), respectively. In (a) and (c), simulations 
in their respective historical period are conducted with historical climate forcing while those in future period are with the 
rcp8.5 (for Columbia HAZard model) and ssp585 (for HighResMIP) warming scenarios. In (b) and (d), the simulations are 
under pre-industrial control climate (no anthropogenic forcing). (a) and (b) show the results from ensemble mean while (c) 
and (d) show the results from all ensemble members.
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trend in the historical period but a sharp dip after 2030. The ssp585 scenario in HighResMIP starts after 2015, 
though. Hi-TRACK's annual TC frequency climbs up by 2040. Roberts et al. (2020a, 2020b) reported that both 
Hi-TRACK and Hi-TempExt project a reduction of ensemble mean annual frequency (less than 10%) from 1950–
1980 to 2020–2050, but the spread covers zero, indicating low confidence in the mean trend.

Figures 1b and 1d show analogous results for piC simulations. Note that the years in the x-axis do not correspond 
to the actual historical years for most models; these labels are placed so we can compare the simulated trends 
to the observed trend and those in Figures 1a and 1c. Two exceptions are MRI-LENS and CAM5 simulations; 
both are uncoupled atmospheric models and forced with observed SST with anthropogenic trend removed (See 
Section 2 for details). In Figure 1b, the CHAZCRH and CHAZSD results do not diverge. There is no dip in the 
Hi-TRACK or Hi-TempExt. Clearly, the separation between CHAZCRH and CHAZSD and the dip in the two High-
ResMIP data sets in Figure 1a represent forced responses.

Next we conduct the trend analyses of the annual TC frequency in Figure 1 using second-order Legendre poly-
nomial fits (Equation 2). As an example, Figure 2a shows the analysis using the CHAZCRH simulations and the 
observations. The observed fit (dashed black line) has an upward trend of 0.061 storm year −1 and a positive curva-
ture of 0.0036 storm year −2 (shown as the first black dot and the horizonal black line in Figures 2b and 2c). The 
existence of a linear trend means that there is an overall increasing trend in storm activity since 1951 while the 
quadratic terms captures the multi-decadal variability, with high activity in the 1950s–1960s, low in the 1970s–
80s, and high after that, which recent research suggests may be a forced signal rather than natural variability 
(Bellomo et al., 2018; Clement et al., 2015). The 90% confidence intervals depicted in Figures 2b and 2c consist-
ently lie above the zero line, indicating a reasonable level of statistical significance for both the upward trend and 
positive curvature observed. To account for the potential impact of missing data in the 1950s and 1960s discussed 
in Section 2.1, we applied second-order Legendre polynomial fits to the data starting instead in 1961 and 1971, 
represented by the second and third black dots in Figures 2b and 2c. These fits reveal stronger upward trends, 
measuring 0.09 storms year −1 and 0.15 storms year −1 for the periods of 1961–2020 and 1971–2020, respectively. 
The positive curvatures are determined as 0.004 storm year −2 and 0.003 storm year −2. However, when excluding 
the high activity in the 1950s–1960s, the 90% confidence interval for positive curvature derived using 1971–2020 
data includes the zero line, indicating no statistical significance at the 10% level. We also conducted Legendre 
polynomial fits for Atlantic hurricanes (with LMI greater than 64 kt) frequency using both the IBTrACS data set 
and the adjusted records from Vecchi et al. (2021) that account for missing storms. The derived trend and curva-
ture from IBTrACS are 0.03 storms year −1 and 0.00175 storms year −2, respectively, while they are 0.02 storms 
year −1 and 0.0013 storms year −2 using the data from Vecchi et al. (2021). This exercise suggests that the missing 
storms in 1950s and 1960s may introduce slight variations in the absolute values, but do not cause drastic changes 
to the overall results. Hence, for the subsequent discussions, we use only the IBTrACS data.

In Figure 2a, the polynomial fits of CHAZCRH simulations from historical only (light blue dashed line) and from 
historical to future (dark blue dashed line) simulations both show small upward curves while the polynomial fit 
derived from the piC simulations (gray dashed line) is quite flat. The ranges of the fit parameters from all ensem-
ble members in each data set are also shown in Figures 2b and 2c. The means of simulated trend from individual 
approaches are smaller (in magnitude) than the observed trend, and some have negative signs (Table 2). For 
examples, the mean linear trends in the historical period are 0.00061, −0.035, 0.0089, −0.047, 0.01, and 0.012 
for CHAZCRH, CHAZSD, CAM5, MRI-LENS, Hi-TempExt and Hi-TRACK, respectively.

As discussed in Section 2.4, a question we are asking here is whether not the observed trends lie within the ensem-
ble spread from simulations. Figure 2b show that the observed linear trend is above most of the piC simulations 
except those from CAM5. However, CAM5 has only 10 years of simulations, which is too short to be compared 
with 70 years of observations. The observed quadratic term is outside of the ensemble ranges of piC simulations 
from CHAZCRH, CHAZSD, and the two HighResMIP data sets, and is within the 25–75 percentile ensemble ranges 
of MRI-LENS simulations and in the top 25th percentile (75–100 percentile) in CAM5. The observed linear trend 
is in the top 25th percentile (75–100 percentile) of the historical simulations of both CHAZCRH and CHAZSD, 
MRI-LENS and CAM5, and is marginally covered by the simulations of Hi-Track; the observed quadratic term 
is within the top 25th percentile range of the historical simulations of CHAZCRH, CHAZSD, and CAM5, and is 
withing 25–75 percentile in MRI-LENS. Only the linear trend derived from historical + future simulations of the 
CHAZCRH includes the observed value. For the quadratic trend, the observed values are above model fitted values. 
(We do not use any warming simulations from CAM5 and MRI-LENS.)
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Generally speaking, the polynomial fit analysis suggests that, first, CHAZCRH, CHAZSD and MRI-LENS better 
capture the observed trend and multi-decadal variability than others. However, CAM5 has only 10 years of data 
with five ensemble members, and Hi-TRACK and Hi-TempExt have only, respectively, seven and six ensemble 
members. These three data sets may not be large enough to represent their own internal variability fully. Second, 
the observed linear trend is marginally covered by the spread of CHAZCRH, CHAZSD and MRI-LENS’ piC simu-
lations but within the spread of these models' historical simulations, indicating that anthropogenic forcing is 
necessary to capture the upward trend in the past decades. On the other hand, we cannot rule out the possibility 
that the recent upward curvature is within the range of natural variability. The MRI-LENS’ piC simulations are 
forced with the observed SST with long-term trend removed and thus have the upward curvature right on top of 
observed values in Figure 2c. Simulations from CHAZCRH and CHAZSD suggest that anthropogenic forcing helps 
to capture the upward curvature trend. Third, when considering the future period as well, the mean of CHAZCRH 
shows an upward trend, the mean of CHAZSD shows a downward trend, and the mean of the two HighResMIP 
simulations are close to zero. However, we have low confidence in the projected trend as their spread includes 
zero. Thus, we cannot say for sure that the positive linear and quadratic trends will continue into the future.

Figure 2.  (a) Observed (black) and CHAZCRH simulated mean annual tropical cyclone frequency. The CHAZ simulations are 
from present (1951–2005) to future climate (2006–2040) periods (blue), and from those using pre-industrial control climate 
forcing (gray). Dashed lines show the polynomial fit. “hist” shows the fit using synthetic storms from historical period only 
while “whole” are from the historical and future periods. (b) Linear terms of the polynomial fit derived using synthetic and 
directly simulated storms' annual frequency from all data sets. Data sets are indicated by color while the black line show 
the observed value. The three black dots (from left to right) and the vertical lines show the observed value and the 95% 
confidence interval level using data starting in 1951, 1961, and 1971. (c) Similar to (b) but for the quadratic terms. (d) and (e) 
are similar to (b) but for linear terms from the polynomial fit of LMI95 and storm translation speed. Units for (b), (c), (d) and 
(e) are, respectively, storm number  year −1, storm number year −2, m s −1 yr −1, and km hr −1 yr −1.
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It should be noted that without the basin-wide frequency adjustment (not shown), the observed linear and quad-
ratic trends lie outside of the spreads of MRI-LENS, Hi-TempExt and Hi-TRACK in all three periods. They are 
within the spreads of the CHAZCRH and CHAZSD simulations in the piC and historical periods. With additional 
data from 2006 to 2040, only CHAZCRH shows such an upward trend continuing into the future.

3.2.  Intensity and Storm Motion

Figure 2d shows the fit parameters of Atlantic TC LMI. Specifically, we look at the variability of the 95th percen-
tile of LMI (LMI95), for which an upward trend has been found in observations (Kossin et al., 2013). Here we 
focus on the ensemble spread of the linear term only. The ensemble mean of the linear trend is shown in Table 2. 
There is an upward trend in the observations (0.18 m s −1 year −1), meaning that the extreme tail of observed inten-
sity has increased with time, consistent with previous studies (e.g., Knutson et al., 2020a, and others). Similar to 
Figure 2b, the upward trend of LMI95 is more evident when analyzing data starting in 1971. The positive linear 
trend is captured by the ensemble spreads of the two CHAZ data sets and those from MRI-LENS and CAM5 
for both piC and historical periods. It is outside of the ensemble spread of all simulations from Hi-TRACK and 
Hi-TempExt. Thus, at least based on CHAZCRH, CHAZSD, MRI-LENS, and CAM5, we cannot rule out the possi-
bility that the recent upward trend in the LMI95 is due to natural variability. When looking into the future, only 
the mean of CHAZCRH spread is positive, and it is negative for CHAZSD. The mean of the spreads of Hi-TempExt 
and Hi-TRACK are close to zero. Similar to the results from TC frequency, the ensemble spread in Figure 2d 
include zero in the whole historical + future periods combined, indicating, again, low confidence in the directions 
of the projected changes.

Figure 2e shows the analysis for translation speed. Consistent with Kossin (2018), the observations show a clear 
downward trend (−0.036 km hr −1 year −1). The 90% confidence interval of the observed trend includes zero, 
however. This observed trend is within ensemble spread in all periods, including piC, for all models, except the 
simulations from Hi-TempExt. However, the mean and the 25th–75th percentile ensemble spreads in these data 
sets move toward different directions from piC to historical to historical +  future periods. The Hi-Track and 

Data Period
Freq. Slope 

(storm number  year −1)
Freq. Curv. 

(storm number  year −2)
LMI95 slope 
(m s −1 yr −1)

Trspeed slope 
(km hr −1 yr −1)

IBTrACs Historical 6.1E−2 3.6E−3 0.18 −3.6E−2

CHAZCRH∕CRH Historical 6.1E−3 1.4E−3 2.3E−2 −9.5E−3

Whole 1.9E−2 5.0E−4 3.8E−2 −3E−3

piControl 1.1E−3 −1.3E−4 1.1E−3 −1.0E−3

CHAZCRH∕ SD Historical −3.5E−2 −1.0E−3 −2.6E−3 −1.34E−2

Whole −6.3E−2 −6.4E−4 −1.9E−2 −3E−3

piControl 1.6E−3 3.03E−5 1.6E−3 −2.0E−3

MRI-LENS Historical 8.9E−3 2.8E−3 2.0E−2 7.37E−3

Whole N/A N/A N/A N/A

piControl −9.0E−3 3.4E−3 −3.3E−3 6.0E−4

CAM5 Historical −4.7E−2 −2.0E−2 −0.3 3.78E−2

Whole N/A N/A N/A N/A

piControl 3.7E−3 1.5E−2 3.9E−1 −4.6E−2

Hi-TRACK Historical 1.0E−2 −4.2E−5 4.0E−2 9.0E−3

Whole −2.5E−3 −3.9E−4 4.6E−3 9.5E−3

piControl 4.3E−4 −1.9E−4 −2.6E−2 4.3E−1

Hi-TempExt Historical 1.2E−2 7.5E−4 3.9E−2 1.6E−2

Whole 4.8E−3 2.2E−4 2.0E−2 1.21E−2

piControl −9.1E−3 2.5E−4 9.4E−3 5.1E−3

Table 2 
Ensemble Mean of the Legendre Polynomial Fitted Parameters
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MRI-LENS HIST simulations show upward trends in the storm motion and these upward trends continues in 
to the future. The differences in mean and 25th–75th percentile ensemble spreads from CHAZCRH and CHAZSD 
from these three periods are small. The piC and HIST simulations from CAM5 suggest that anthropogenic forc-
ing may lead to a strong downward trend in storm translation speed but again CAM5 simulations covers shorter 
period than are those of the other models. It seems unjustified, based on this set of models, to attribute the 
observed slowing down to anthropogenic forcing. It also noteworthy that at a regional scale, CHAZ projected an 
upward trend in storm translation speed for TCs affecting Texas (Hassanzadeh et al., 2020) and a downward trend 
for storms impacting New York (Lee et al., 2022). Spatially inhomogeneous changes may dilute the basin-wide 
signal.

4.  Likelihood Comparison
Figure 2 shows that the simulated trends in historical and historical + future TC statistics vary from one data set 
to another. This is especially true for the different TC frequency projections between CHAZCRH and CHAZSD, but 
a qualitatively similar result, including both increasing and decreasing trends, holds for the rest of our ensemble 
of opportunity. It is natural to ask whether we can develop some criteria for determining which is correct. In 
climate science, the multi-model ensemble mean is a common approach to obtain the consensus from multi-
ple global climate models. However, such an approach is only adequate when the ensemble spread represents 
variations that can be considered random, as might be the case with typical aleatoric (stochastic) uncertainties. 
The divergent scenarios in the frequency projections are a consequence of the epistemic uncertainty (Epistemic 
uncertainty refers to the uncertainty stemming from limitations in scientific knowledge, models, and data used to 
project future climate conditions (Beven et al., 2018; Shepherd, 2019)) due to the lack of a satisfactory scientific 
understanding of TC frequency (Emanuel, 2022; Sobel et al., 2021) and thus the multi-model mean may not be 
meaningful in this case. We can, however, use likelihood analysis, in which the probabilities that the observations 
occurs within the model simulated distribution were computed. Thus, we can determine which simulation the 
observation is more consistent with. This is similar to the Likelihood Skill Score used for evaluating weather and 
climate predictions (Barnston et al., 2010).

Specifically, we first assume that annual hurricane frequency is drawn from a Poisson distribution whose mean 
(λt) has a trend in time (λt = at + b). We then obtain a and b of each data set by fitting the model annual TC 
frequency to a Poisson regression. We do so for all simulations (up to 2005 for CAM5 and 2010 for MRI-LENS). 
Note that with a and b, we can derive λt even for years beyond the data coverage period, that is, we can estimate 
f2020 with a and b derived from CAM5 data. The yearly likelihoods (Lt) of the observed frequencies are assigned 
based on the Poisson distribution with a given λt. For example, the likelihood CHAZCRH simulations will gener-
ate 20TCs as observed in 2005 is 0.02%, which is based on a Poisson distribution with λ2005 = 16.02. The same 
calculation is applied to piC simulations, and the derived likelihood is denoted LpiC,t. For a given year, we then 
compare the log likelihood ratios Lt and LpiC,t (i.e., log(Lt/LpiC,t) = log(Lt) − log(LpiC,t)). If this ratio is positive, the 
observations are more consistent with the simulations with anthropogenic forcing than with the piC simulations. 
If this ratio is negative, the observations are more consistent with the simulations with the piC simulations than 
with anthropogenic forcing.

We start by comparing the likelihoods of simulations with anthropogenic forcing to those with piC simulations 
(i.e., log(Lt/LpiC,t) in Figure 3. The ratios of the likelihoods jointly up to 2020 (numbers on the upper-left in all 
panels) suggest that the observations are more consistent with the simulations with anthropogenic forcing than 
those without in CHAZCRH, MRI-LENS, and Hi-TempExt. The annual likelihood ratios from these three data 
sets further show higher annual likelihood (Lt) for the observed annual frequency values during the period of 
high TC activity in 1950–1970 and after 2000 while higher LpiC,t is found during 1970–2000. This is because 
there are upward trends in the simulated annual frequency in these three data sets when compared to those in 
piC (Figure 2a). As λt increases with time, the distributions from these three data sets shift right with time and 
thus give greater likelihood to the high observed annual frequency when compared to those derived from piC 
simulations in which λt is close to constant in time. In contrast, CHAZSD has a downward trend and its λt shifts left 
in time and leads to lower likelihood when observed values are high. Consequently, we see a higher LpiC,t during 
high TC activity periods and higher Lt during the inactive TC seasons in CHAZSD. The frequency slopes obtained 
from piC and HIST in the Hi-TRACK data are similar and thus their log likelihood ratio is close to zero. When 
comparing the log likelihood ratio between every two data sets during 1951–2020 with anthropogenic forcing, 
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observations are more consistent to simulations in CHAZCRH than other five 
data sets, followed by MRI-LENS, Hi-TempExt, Hi-TRACK, and CAM5.

The basin-wide frequency adjustment (Equation  1) that we performed to 
correct model biases is expected to affect the results of the likelihood anal-
ysis, because the frequency adjustment both shifts the mean of the model's 
TC annual frequency distributions and changes their shapes. The annual 
frequency distributions from historical and piC simulations are more distinct 
in the data sets without frequency adjustment, which indeed leads to larger 
log likelihood ratios (not shown). Without the frequency adjustment, the 
observed TC annual frequencies are more consistent with the historical simu-
lations in CHAZCRH, CHAZSD,and MRI-LENS than in their respective piC 
simulations due to the large bias in these piC simulations.

While the Poisson distribution is commonly assumed for modeling TC 
frequency, TC data in practice may deviate from a Poisson distribution, 
which has a constant rate. For instance, in extreme years when environmen-
tal conditions, typically unfavorable for TC genesis, temporarily become 
favorable, the resulting peaks may not be well captured by the overall Pois-
son distribution. Also, pooling Poisson-distributed data with different rates 
results in data that are not Poisson distributed. In the case of CHAZCRH and 
CHAZSD, for example, the genesis probability follows a Poisson distribution 
at each 2 × 2 grid, as described in Tippett et al.  (2011). Each grid has its 
own mean rate, which depends on the local environment, meaning that differ-
ent years, grid points, and even different CMIP5 models from which CHAZ 
downscaled yield different rates and tend to result in over dispersion (vari-
ance is greater than mean). And additional factor is that we apply a basin-
wide frequency adjustment (Equation 1) that can also deviate the data deviate 
from a Poisson distribution. To mitigate impacts of over dispersion due to 
different models, we fit the Poisson regression and derived the likelihood 
for individual models. The likelihood reported in Figure 3 are the averaged 
values for CHAZCRH, CHAZSD, Hi-Track, and Hi-TempExt. The explained 
variance of historical +  future TCs in each data sets is shown in Table 1. 
Using a negative binomial distribution, an alternative distribution that does 
not constrain the mean and variance to be equal, did not substantially change 
the results (not shown).

5.  Climate Change and Regional Hurricane Risk at Three 
Line Gates
Now we compute regional hurricane risk, from hazard perspective only, 
represented by the return periods of storms of given wind intensities passing 
through pre-defined gates, derived from historical and future simulations. 
We use simulations from CHAZCRH, CHAZSD, Hi-TRACK, and Hi-TempExt. 
The three line gates used here (black lines in Figures 4a–4c) are: the main 
development region (MDR) gate, which can be thought of as delineating 
Atlantic TC hazard in a general sense, that is, how many storms form, and 

at what intensities and then move from the MDR toward the US and Caribbean Islands; the GoM gate, which 
records TC activity for those storms that enter the Gulf of Mexico; and the NE gate which is parallel to a portion 
of the Northeastern US coast. As discussed earlier (Section 2.3), to obtain more realistic return period curves for 
regional hurricane risk assessment, we use a more localized frequency adjustment. As an example, Figures 4d–4f 
show historical simulations from CHAZCRH with basin-wide and regional frequency adjustments (Equation 1). 
While the basin-wide frequency adjustment (dashed lines) yields a TC frequency close to observations at the GoM 
gate, CHAZCRH still overestimates storm activity at the MDR gate and underestimates storm activity at the NE 
gate. The regional frequency adjustments shift the simulated return period curves (solid line, local adjustment) 

Figure 3.  Annual log-likelihood ratio in which λt is derived from historical 
(and future for the Columbia HAZard model and High Resolution Model 
Intercomparison Project runs) simulations to that is estimated based on 
pre-industrial control simulations.
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by matching the return periods at 40 kt to the values derived from observations (see Section 2.3 for details) at the 
gates. In terms of the shape of the return period curve, as well as the return periods at high intensities, CHAZCRH 
performs better at the MDR gate than at the GoM gate. It is difficult to directly compare the modeled curves to the 
observations at the NE gate, due to the significant underestimation of overall TC frequency at the latter. However, 
even there, the shapes of the observed and modeled return period curves are similar.

To show the changes in return periods between historical and future periods, Figures  4g–4i show the return 
period curves derived from the four data sets that have rcp8.5/ssp585 warming scenarios available. We use model 
storms from all ensemble members. Low-intensity biases in the Hi-TRACK and Hi-TempExt lead to an under-
estimate of the TC risk. HighResMIP models barely simulate storms with major hurricane wind strength (Moon 
et al., 2022; Roberts et al., 2020a, 2020b). The return period curves of CHAZCRH and CHAZSD HIST simulations 
are close to each other. The differences between simulations from historical period and those from historical 
and future periods, that is, the differences between the dashed and solid lines, are small for the two CHAZ data 
sets in Figures 4g–4i. Likewise the historical and future period curves of GoM and NE gates for Hi-TRACK and 
Hi-TempExt nearly indistinguishable. At the MDR gate, both Hi-TRACK and Hi-TempExt suggest increases in 
the TC risk.

Figure 4.  (a–c) Observed storm tracks from 1951 to 2020 at three line gates of interest. (d–f) Return period curves from 1951 to 2020 from best-track data (black 
lines), and CHAZCRH historical simulations with basin-wide (dashed lines) and local (solid lines) corrections applied at the three gates. Global climate model forcings 
are indicated by colors and blue lines show the derived return period curves using all data. (g–i) Similar to (d–f) but for the four data sets. The solid lines show the 
return period curves using all historical simulations while dashed lines use all future simulations. Numbers at each Saffir-Simpson intensity threshold are the percentage 
changes of the frequency of the storms exceeding the threshold. Data sets are indicated by colors. Black curves show the empirical return curve using observations from 
1951 to 2020.
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To make these differences more evident, we list the percentage changes in annual TC frequency exceeding each 
Saffir-Simpson category on both sides of each panel in Figures 4g–4i. As expected, there is an overall increase in the 
storm frequency at all thresholds from historical to future periods for CHAZCRH while there is an overall decrease 
for CHAZSD, consistent with the results in Figures 1 and 2a. The percentage changes are larger at higher intensity 
thresholds in the CHAZCRH but they are of similar or smaller magnitude throughout the Saffir-Simpson categories 
in the CHAZSD. This is probably due to the increase in storm intensity as climate warms in CHAZCRH and CHAZSD.

The changes in the frequency of exceedance at the three gates from Hi-TRACK and Hi-TempExt are not the same 
sign. Hi-TRACK shows a 67% decrease of Category 1+ (≤64 kt) at the MDR gate but a 65% increase at GoM 
gate. At the NE gate, Hi-TRACK shows an 14% and 38% increase in the frequency of Category 1+ and 2+ hurri-
canes, respectively. Hi-TempExt shows a 68% decrease and 16% increase of Category 1+ hurricanes at the MDR 
and GoM gates, respectively. At the NE gate, it shows a 9% decrease and 92% increase in the frequency of Cate-
gory 1+ and 2+ hurricanes. Storms from these two HighResMIP runs are undersampled and have low intensity 
biases (See Figure 7 in Roberts et al. (2019)). The directly simulated storms are not suitable for risk assessment 
and these numbers should be used with caution.

6.  Discussion
The results of this study lead us to a view of Atlantic TC risk which requires us to confront epistemic uncertainty. 
We have multiple sets of simulations which give different views of the risk, in particular more so as we look 
further into the future. TC frequency increases in CHAZCRH simulations and decreases in CHAZSD, a difference 
that hangs on a subtle modeling choice (SD vs. relative humidity as a predictor of genesis). Changes in the 
high-resolution global climate model simulations are smaller, but again depends on which models are considered.

The differences among these simulations are manifest not just in the future, but also to some degree in the present, 
and the observations do not allow us to determine with complete certainty which is correct. At present, no rigor-
ous justification can be given regarding which choice to make. Thus, all these outcomes—increasing, decreasing, 
and no change in TC frequency in response to radiatively forced warming—have to be treated as possible. One 
may favor a data set over the others following the results of a statistical analysis, such as the likelihood analysis 
used here. Our calculations indicate that the observations are somewhat more consistent with CHAZCRH, followed 
by MRI-LENS, Hi-TRACK, Hi-TempExt.

The uncertainty in CHAZ's projections of annual TC frequency comes from our design of the CHAZ model, but 
is broadly consistent with the level of broader understanding of TC frequency at present, including that derived 
from the latest high-resolution models shown here as well as other downscaling systems (Sobel et al., 2021). 
Other aspects of TC characteristics that could change with anthropogenic climate change have been also evalu-
ated here, namely the forward motion and LMI95, are less dramatically uncertain, although our analyses show 
that one cannot rule out the role of natural variability. Still, the uncertainty regarding TC frequency introduces a 
large uncertainty into any assessment of overall TC risk, since any change of TC properties is only relevant to the 
extent that TCs actually occur.

The divergence between increasing and decreasing TC frequency scenarios becomes most pronounced in the 
latter part of the 21st century, but has some impact on the present and near future as well (Lee et al., 2020, 2022). 
In the situation when the change of frequency is subtle, changes in other TC properties may lead to differences 
in regional TC risk assessment.

How one views the situation must ultimately be based on one's particular application and the consequences of 
changing TC frequency. A priori, though, we argue that the most rational way to treat epistemic uncertainty is 
to consider all outcomes contained in the results to be possible. In terms of risk, it is useful to note that while 
in everyday language risk is associated with danger, harm, or negative consequences, in business and finance, 
risk simply refers to the uncertainty of potential outcomes, can be positive or negative. From that perspective the 
epistemic uncertainty present in TC climate change signal can only serve to increase risk.

Data Availability Statement
CHAZ (Lee et  al.,  2018) is an open-sourced model (Lee & Schechter,  2023). IBTrACS (Knapp 
et  al.,  2010) data are available at https://www.ncdc.noaa.gov/ibtracs/ (Knapp et  al.,  2022). The CAM5 
data is available at https://portal.nersc.gov/c20c/ (C20C+ Detection and Attribution Sub-project, 2023; 
Stone et  al.,  2019) as the LBNLCAM5-1-2-025° model. HighResMIP TC information can be found at  
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https://catalogue.ceda.ac.uk/uuid/0b42715a7a804290afa9b7e31f5d7753 and https://catalogue.ceda.ac.uk/
uuid/438268b75fed4f27988dc02f8a1d756d (Roberts, 2019). Underlying data for this publications are at https://
doi.org/10.5281/zenodo.8417288 (Lee, 2023).
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