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ABSTRACT

Here we explore the relationship between the global climatological characteristics of tropical cyclones (TCs) in

climate models and the modeled large-scale environment across a large number of models. We consider the cli-

matology of TCs in 30 climatemodelswith awide range of horizontal resolutions.Weexamine if there is a systematic

relationship between the climatological diagnostics for the TC activity [number of tropical cyclones (NTC) and

accumulated cyclone energy (ACE)] by hemisphere in the models and the environmental fields usually associated

with TCactivity, when examined across a large number ofmodels. For low-resolutionmodels, there is no association

between a conducive environment and TC activity, when integrated over space (tropical hemisphere) and time (all

years of the simulation).As themodel resolution increases, for a couple of variables, in particular vertical wind shear,

there is a statistically significant relationship in between the models’ TC characteristics and the environmental

characteristics, but in most cases the relationship is either nonexistent or the opposite of what is expected based on

observations. It is important to stress that these results do not imply that there is no relationship between individual

models’ environmental fields and their TC activity by basin with respect to intraseasonal or interannual variability or

due to climate change.However, it is clear thatwhen examined acrossmanymodels, themodels’mean state does not

have a consistent relationship with the models’ mean TC activity. Therefore, other processes associated with the

model physics, dynamical core, and resolution determine the climatological TC activity in climate models.

1. Introduction

Since the 1970s climate models have been known to

simulate tropical cyclone–like structures (Manabe et al.

1970; Bengtsson et al. 1982; Haarsma et al. 1993). These

models have been used for projections of tropical cy-

clone (TC) activity under anthropogenic climate change

(Broccoli and Manabe 1990; Bengtsson et al. 1996) and

their use for such projections continues to this day, using

low- (Camargo 2013; Tory et al. 2013; Chand et al. 2017)

and high-horizontal-resolution models (Murakami et al.

2012b; Knutson et al. 2013; Manganello et al. 2014;

Bhatia et al. 2018; Bacmeister et al. 2018). Another

common use of climate models is for TC dynamical

forecasts on seasonal (Vitart et al. 2001; Camargo and

Barnston 2009; Manganello et al. 2016; Camp et al. 2019;
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G. Zhang et al. 2019; W. Zhang et al. 2019) and sub-

seasonal time scales (Lee et al. 2018; Camp et al. 2018;

Gregory et al. 2019; Zhao et al. 2019). A recent review

on this topic is provided by Camargo andWing (2016).

Both TC future projections, as well as the subseasonal

and seasonal forecasts, are dependent on the ability of

themodels to simulate TC climatological characteristics.

Various types of bias correction procedures can be ap-

plied to the model ouput (Camargo and Zebiak 2002;

Camargo and Barnston 2009; Camp et al. 2018). However,

these regional bias corrections cannot be used to obtain an

unbiased global TC climatology and could lead to errors in

TC projections and forecasts (Murakami et al. 2014; Lee

et al. 2018; W. Zhang et al. 2019).

The relationship of TC genesis with large-scale en-

vironmental conditions has been studied since the late

1940s, which was summarized recently in Emanuel

(2018). First, Palmén (1948) showed using surface

data and soundings that Atlantic hurricanes typically

form over ocean with temperatures above 278C and

within 58 latitude of the equator, in regions that are

conditionally unstable, while in other regions and/or

seasons the tropics are typically stable. Then, Gray (1979)

developed an empirical relationship between genesis and

climatological conditions of the environment, identifying

six environmental conditions necessary for genesis: ocean

thermal energy, low-level relative vorticity, vertical wind

shear, Coriolis parameter, relative humidity of the tro-

posphere, and a measure of instability of the atmosphere.

Since then, many other empirical genesis indices have

been developed (DeMaria et al. 2001; Emanuel andNolan

2004; Emanuel 2010; Tippett et al. 2011; Bruyère et al.

2012; Camargo et al. 2014), making improvements and

modifications on the original predictors by Gray. These

modifications include using potential intensity instead of

sea surface temperature (SST) (Emanuel and Nolan 2004;

Emanuel 2010), determining a threshold effect for vorticity

(Tippett et al. 2011), considering the saturation deficit of

themidtroposphere instead of relative humidity (Emanuel

2010; Camargo et al. 2014), and adding the vertical velocity

as an additional predictor (Murakami and Wang 2010).

More recently, Tang and Emanuel (2012a,b) proposed a

ventilation index combining humidity, shear, and po-

tential intensity and have shown that it influences both

genesis and intensification of TCs. Furthermore, Emanuel

(2000),Wing et al. (2007), andKossin andCamargo (2009)

showed a relationship between observed TC intensity and

potential intensity, supporting the inclusion of potential

intensity in TC indices.

Given this rich history of relating environmental

conditions to TC genesis and intensification, it is not

surprising that when analyzing the climatology of TCs

in climate models, the scientific community would make

the assumption that there is a relationship between the

model environmental fields climatology and the TC cli-

matology in the model. We might expect these relation-

ships to be valid in models, because they are valid in

observations. Furthermore, if we look at the geographic

and temporal variability within a single dataset (either

model or observations/reanalysis), there is indeed a clear

relationship between the model environment and TC

activity. For example, genesis indices are typically able to

reproduce the global climatological TC pattern, as well

the seasonal and interannual variability in individual TC

basins in observations (Camargo et al. 2007a; Tippett et al.

2011) and models (Camargo et al. 2007b; Camargo 2013;

Camargo et al. 2014, 2016). Therefore, typically biases in

modeled TC climatology are explained in the literature

through the bias in the climatology of the large-scale

environmental conditions in these models (Manganello

et al. 2012; Camargo et al. 2016).

However, we are not aware of a study that shows that

this hypothesis is actually valid. In fact, Reed et al. (2015)

and Vecchi et al. (2019) showed that the TC activity in two

versions of the same model could not be explained by

the differences in their large-scale environment. In

Reed et al. (2015) the model differences were due to

different dynamical cores, whereas in Vecchi et al.

(2019) they are due to different horizontal resolu-

tions. Nevertheless, Vecchi et al. (2019) found that

the responses in the models of different resolution

could be reconciled after accounting for the sensitivity of

pre-TC synoptic disturbances to changing climate, in

addition to changes in large-scale environmental factors.

We do know that if there are changes in the environment

within a givenmodel, due to climate variability or climate

change, that the TC activity will change accordingly; this

is why there is skill in dynamical seasonal forecasts

(Camargo and Barnston 2009; Vitart 2009; Vecchi et al.

2014), for instance. Therefore, if we examine one specific

model, generally there is a geographical and/or temporal

relationship of the large-scale enviroment and TC activ-

ity. It is not obvious that this relationship actually leads

to a coherent relationship across many models between

the models’ mean climatogical conditions and the

models’ TC climatology. If such a relationship existed, it

would help explain the large differences in TC clima-

tology characteristics among models.

While increasing model horizontal resolution is known

to improve the ability of climate models to simulate TCs

(Murakami and Sugi 2010; Manganello et al. 2012, 2014;

Walsh et al. 2013; Strachan et al. 2013;Wehner et al. 2014;

Roberts et al. 2015, 2018), resolution alone is not a solution

for model biases. Models with the same or very similar

horizontal resolution can have very different TC clima-

tology characteristics (Camargo 2013; Shaevitz et al. 2014).
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It has been shown that besides resolution, the TC

climatology in climate models is sensitive to model

physics (Vitart et al. 2001; Reed and Jablonowski 2011;

Kim et al. 2012; Murakami et al. 2012a; Zhao et al. 2012;

Duvel et al. 2017), dynamical core (Reed et al. 2015),

and coupling to the ocean (Zarzycki 2016; Scoccimarro

et al. 2017; Li and Sriver 2018), as well as the tracking

algorithm used to identify TCs in the model outuput

(Horn et al. 2014; Zarzycki and Ullrich 2017). It is clear

that complex processes in the model determine the

formation and intensification of TCs.

Therefore, it is important to analyze the role of the

climatological large-scale environment in determining

the model TC climatology. The question we explore

here is: do models with a climatological large-scale

environment that is more conducive to TC genesis

and intensification (e.g., higher values of potential in-

tensity and lower values of vertical wind shear) have a

TC climatology with more frequent and intense TCs?

Similarly, if a model climatological environment is drier

than other climatemodels, is this model’s TC climatology

less active than other models? These are simple ques-

tions, but they have not been explored systematically

across multiple models.

We will consider 30 climate model simulations of

TCs, from three multimodel ensembles, spanning a

variety of models’ horizontal resolution, physics, and

dynamical core, as well as TC tracking algorithms.

There are 14 model simulations from phase 5 of the

Coupled Model Intercomparison Project (CMIP5)

(Taylor et al. 2012), 6 from theU.S. CLIVARHurricane

Working (HWG) (Walsh et al. 2015) dataset, and 10

model simulations from a collaborative effort for a

NOAA funded project that is part of the NOAAModel

Diagnostics Task Force (MDTF) (Maloney et al. 2019).

Similarly to what was done in the analysis of the TCs in

the HWG project (Shaevitz et al. 2014; Daloz et al.

2015; Nakamura et al. 2017; Ramsay et al. 2018), we are

considering the tracking provided by each modeling

group as part of the model package.

This is an ensemble of opportunity; that is, we use the

model simulations and TC tracks that are available to us,

as they are. These model simulations were not produced

for this purpose. Therefore, there are caveats in our

analysis that we need to be aware of, such as the de-

pendence on the models’ TC tracking schemes and

thresholds. Our assumption is that if there are sig-

nificant differences among the models’ climatologies,

these would be larger than those due to tracking scheme.

As discussed in Horn et al. (2014), the sensitivity to

differences in TC tracking schemes is more important

for low-resolution models and weak storms; as the

model resolution increases, the sensitivity to tracking

routine decreases. We note that in most of the 30 models,

with the exception of three cases, one of two tracking

algorithms was used to track TCs. The TCs in all low-

resolution models were tracked with the same tracking

routine, so differences among them arise from other

sources. This should help mitigate some of the tracking

sensitivity in our analysis. Another issue that we should

be aware of is that the model simulations in these multi-

model ensembles do not consider the same periods and

have different lengths. Furthermore, the CMIP5 multi-

model ensemble consists of coupled ocean–atmospheric

simulations (CMIP5) and in the other two ensembles, the

simulations are forced with fixed SST. Finally, the HWG

simulations are forced with climatological SST (i.e., the

same SST for every year of the simulation varying only

monthly), while the NOAA-MDTF simulations are

forced with yearly varying monthly SST.

We will examine the climatological environmental

fields that are typically associated with TC genesis and

intensification among these models and determine if

there is a robust relationship across models between the

TC climatology and these environmental fields.

In section 2, we list the model simulations and data

used in our analysis, as well as the large-scale envi-

ronmental fields considered. Our results are given in

section 3, and the conclusions in section 4.

2. Models, data, and diagnostics

a. Models

The models used in this analysis are from three

different multimodel ensembles. The first set of models

is from CMIP5 multimodel ensemble. The TCs in the

historical coupled simulations (1850–2005) of 14 low-

resolutionmodels have been tracked using the Camargo–

Zebiak algorithm (Camargo and Zebiak 2002), with the

same thresholds globally. One ensemble member was

used for each model. We only considered the period

1971–2000 so that we have a similar period and number of

years as the observations and other multimodel ensem-

bles. Various aspects of the TC activity in those simula-

tions have been discussed in detail in Camargo (2013), as

well as in Tang and Camargo (2014), Kossin et al. (2016),

and Nakamura et al. (2017). Table 1 has a list of the

CMIP5 models analyzed, including their references,

resolution, and here are referred to as C1 to C14.

The second set of models is from the U.S. CLIVAR

Hurricane Working Group (HWG) multimodel ensem-

ble simulations for the current climate. Details about the

HWG models and simulations are described in Walsh

et al. (2015). The models in this ensemble have higher

horizontal resolution (0.258 to 1.258) and were all forced

with the same fixed climatological SST for the present
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climate for the period (1985–2001). Various aspects of

these simulations have been discussed in the literature

(e.g., Shaevitz et al. 2014; Horn et al. 2014; Wang et al.

2014; Scoccimarro et al. 2014; Villarini et al. 2014; Daloz

et al. 2015; Camargo et al. 2016; Han et al. 2016;

Nakamura et al. 2017; Ramsay et al. 2018). Table 2 has a

list of the HWG models, their resolution, and refer-

ences, and they are called W1 to W6 in this manuscript.

Only the models that had all the output necessary for

our analysis were included here. Each modeling group

contributed a different number of years for this project,

varying from 10 to 20 years. All available years were

considered in our analysis.

The third set of models is a contribution to our project

as part of the NOAA Model Diagnostics Task Force

(MDTF; Maloney et al. 2019). Various modeling groups

agreed to contribute their existing simulations to this

effort. Subsets of these simulations have been used

for developing and testing process-oriented diagnostics

for tropical cyclones in climate models, as described in

Kim et al. (2018), Wing et al. (2019), and Moon et al.

(2020). These models typically have resolutions of

0.58 and 0.258, with exception of the model simula-

tions that were performed for the MDTF (18). Note

that the HiRAM simulations that are part of this

group were originally a contribution for the HWG,

but with observed monthly varying SST. The list of

the models in this group is given in Table 3 and they

are named P1–P10. The CAM5-SE simulations used a

variable-resolution grid, with resolution of 0.258 in the

North Atlantic and 18 in the rest of the globe.

Note that the GISS-C180 employs a development

version of GISS ModelE3 from early 2018 with a reso-

lution of 0.58. The dynamical core used in this study

(Putman and Lin 2007) is the same as that used in GISS

ModelE2. The parameterizations in this version of the

model were also used by Cesana et al. (2019), who

outline some updates to the physics distinguishing E3

from E2. Stratiform hydrometeors in E3 evolve within

the two-moment microphysics framework of Gettelman

andMorrison (2015), and water cloud fraction and cloud

water mixing ratio are both diagnosed from a triangular

probability density function. The turbulence model is

based on Bretherton and Park (2009). The moist convec-

tion scheme retains the overall E2 structure but incorpo-

rates numerous updates to downdrafts, entrainment, and

microphysics, and now features cold pools (Del Genio

et al. 2015).

As mentioned above, the model simulations were

not designed for this analysis, but rather we are using as

manymodels as possible in it. For each case, we used the

model output of as many years of the simulation as they

were available to us, and the TC tracking routine that

was used by each modeling group. This way we are con-

sidering the model and tracking routine as a package. It

should be emphasized though that all low-resolution and

two high-resolutionmodels (C1–C14,W4, P7, P8, and P9)

have been tracked with the Camargo–Zebiak tracking

algorithm. Furthermore, most of the high-resolution

models are tracked with the Vitart/Zhao algorithm,

TABLE 1. List of CMIP5 models analyzed, including their ref-

erences, horizontal resolution, and name convention used. TCs are

tracked in the historical simulations in the period 1971–2000 using

the Camargo–Zebiak tracking routine (Camargo and Zebiak 2002)

for one ensemble for each model, as described in Camargo (2013).

Model Name Resolution Reference

CanESM2 C1 2.98 von Salzen et al. (2013)

CCSM4 C2 1.28 Gent et al. (2011)

CSIRO-Mk3.6.0 C3 1.98 Rotstayn et al. (2012)

FGOALS-g2 C4 3.08 Bao et al. (2013)

GFDL-CM3 C5 2.58 Donner et al. (2011)

GFDL-ESM2M C6 2.58 Donner et al. (2011)

HadGEM2-ES C7 1.98 Jones et al. (2011)

INM-CM4.0 C8 2.08 Volodin et al. (2010)

IPSL-CM5A-LR C9 3.78 Voldoire et al. (2013)

MIROC-ESM C10 2.88 Watanabe et al. (2011)

MIROC5 C11 1.48 Watanabe et al. (2010)

MPI-ESM-LR C12 1.98 Zanchettin et al. (2013)

MRI-CGCM3 C13 1.28 Yukimoto et al. (2012)

NorESM1-M C14 2.58 Zhang et al. (2012)

TABLE 2. HWGmodels’ characteristics, references for models and tracking schemes, and number of simulation years in each scenario.

Definitions: LR: low resolution, HR: high resolution. References: Camargo and Zebiak: Camargo and Zebiak (2002), Prabhat: Prabhat

et al. (2012), Rienecker: Rienecker et al. (2008), Roeckner: Roeckner et al. (2003), Saha: Saha et al. (2014); Schmidt: Schmidt et al. (2014);

Scoccimarro: Scoccimarro et al. (2011), Vitart: Vitart et al. (2003), Wehner: (Wehner et al. 2015), Zhao: Zhao et al. (2009).

Model Name Resolution Reference Tracking scheme No. of years

CAM5.1 HR W1 0.258 Wehner Vitart/Prabhat 15

CAM5.1 LR W2 18 Wehner Vitart/Prabhat 19

CMCC–ECHAM5 W3 0.758 Rockner/Scoccimarro Vitart/Zhao 10

GISS C90 W4 18 Schmidt Camargo and Zebiak 20

NASA-GSFC W5 0.58 Rienecker Vitart/Zhao 20

NCEP-GFS W6 18 Saha Vitart/Zhao 10
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or a slight modification of this algorithm, namely five

Hurricane Working Group models (W1, W2, W3, W5,

and W6) and four process-oriented diagnostic models

(P3, P4, P5, and P10). Only three models are not tracked

with either of these algorithms: P1, P2, and P6. To ex-

plore the sensitivity of our results to the tracking algo-

rithm, we will show in the online supplement a few key

figures grouped by tracking algorithm.

b. Data

We compare the models’ environmental fields with

those produced by the European Centre for Medium-

RangeWeather Forecasts (ECMWF) interim reanalysis

(ERA-Interim) dataset (Dee et al. 2011), which is

available from 1979 to the present. Here we consider

the period 1981–2010 for the climatology, as it has the

largest overlap with all the models’ climatology.

The TC observations are based on the best track

datasets of the National Hurricane Center (NHC) for

the Atlantic and eastern North Pacific (Landsea and

Franklin 2013) and the Joint Typhoon Warning Center

(JTWC) (Chu et al. 2002) for the other basins. The best

track datasets from these two agencies were chosen, as

they have consistent time averaging of 1min for the

maximum wind speed. We consider the observations in

the period 1981–2010. We also consider TCs tracked in

the ERA-Interim reanalysis using the Murakami and

Sugi (2010) tracking method, as described inMurakami

et al. (2014) for the period 1981–2010. Similarly to re-

analysis, this period was chosen due to the largest

overlap across all models.

c. Diagnostics

We use two diagnostics to represent the TC clima-

tology: the number of TCs (NTC) and the accumulated

cyclone energy (ACE). We only consider TCs that

form in the tropics (308S–308N). For observations, we

consider only TCs that reach at least tropical storm

intensity (i.e., surface wind speeds of at least 17m s21).

In contrast, for the models we did not use an additional

threshold in the storm’s intensity, as it is standard to

have thresholds in the models’ tracking schemes, which

are typically dependent on the models’ horizontal res-

olution (Walsh et al. 2007). In the models we excluded

storms that form in the South Atlantic and southeast

Pacific (east of 2508), as they are not present in either the
NHC or the JTWC observed datasets in that period.

Furthermore, wewant tomatch the environmental fields

to TC formation areas and the environmental conditions

in those regions are not conducive to TC activity and

would bias our results.

ACE is defined as Sy2 for all 6-hourly time steps,

where y is the maximum sustained surface wind speed.

In observations, only time steps for which the surface

winds reach at least 35 kt are included in the ACE cal-

culation, following the definition of Bell et al. (2000).

For the models, we used a modified version, including

the wind speed at all time steps, as in Camargo (2013).

This is particularly important in the case of low-resolution

models, which generate very weak storms. Furthermore,

Davis (2018) showed that from a dynamical perspective,

0.258 (the finest resolution considered here) should not

produce a realistic number of category 4 and 5 storms in

the absence of larger wind radii or suplementary pa-

rameterization. Zarzycki and Ullrich (2017) showed that

integrated quantities as ACE are less sensitive to differ-

ences in tracking algorithms than TC counts. The reason

for that is that all trackers are typically able to track the

most intense long-lived storms, which contribute most

significantly to ACE. Therefore, our analysis of ACE has

smaller uncertainty due to track sensitivity than NTC.

Track density is calculated by counting the number of

TCs passing in each grid point in the 6-hourly tracks. For

each model, the track density is normalized by the

TABLE 3. List of the NOAA process diagnostics models analyzed, including references, their horizontal resolution, and tracking

routines. Camargo and Zebiak: Camargo and Zebiak (2002), Cherchi: Cherchi et al. (2019), Delworth: Delworth et al. (2012), Gent: Gent

et al. (2011);Molod:Molod et al. (2015),Murakami:Murakami et al. (2015), Neale: Neale et al. (2012), Rienecker: Rienecker et al. (2008);

TempestExtremes: Ullrich and Zarzycki (2017), Vecchi: Vecchi et al. (2014), Vitart: Vitart et al. (2003), Wehner: Wehner et al. (2014),

Zarzycki:Zarzycki et al. (2014, 2017), Zhao: Zhao et al. (2009), Zhao18: Zhao et al. (2018a,b).

Model Name Resolution Reference Tracking Type No. of years

GFDL AM2.5-AMIP P1 0.58 Delworth Murakami SST 20

GFDL CM2.5-FLOR P2 0.58 Vecchi Murakami Coupled 20

GFDL HiRAM P3 0.58 Zhao Zhao/Vitart SST 20

CMCC-CAM5 P4 0.258 Scoccimarro/Cherchi Zhao/Vitart SST 5

CAM5-FV P5 0.258 Neale/Wehner Zhao/Vitart SST 20

CAM5-SE P6 0.258/18 Neale/Zarzycki TempestExtremes SST 20

GFDL AM4-MDTF P7 18 Zhao18 Camargo and Zebiak SST 5

CCSM4-MDTF P8 18 Gent Camargo and Zebiak SST 5

NASA GEOS5 P9 0.58 Rienecker/Molod Camargo and Zebiak SST 20

GISS-C180 P10 0.58 Schmidt Zhao/Vitart SST 20
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number of simulation years. The track density was

calculated using a common grid for models and ob-

servations, namely a uniform 48 grid.
We examined various standard environmental fields

that are typically used to determine if the environment

is conducive for TC formation and intensification; in

particular, the components of genesis indices (Gray 1979;

Emanuel and Nolan 2004; Emanuel 2010; Tippett et al.

2011; Camargo et al. 2014) and the ventilation index

(Tang and Emanuel 2012b,a), as well one genesis index

combining several fields together. All these variables

were computed frommonthly-mean fields inmodels and

observations. We only show a subset of the analyzed

fields here. They are as follows:

d Vertical shear: magnitude of the vertical wind shear

between 200 and 850 hPa
d Relative humidity at 600hPa
d Column relative humidity: ratio of the column inte-

grated water vapor path and the column saturated

water vapor path (Bretherton et al. 2004; Camargo

et al. 2014)
d Omega at 500 hPa
d Relative vorticity at 850 hPa
d Potential intensity (PI): theoretical maximum intensity

that a TC can reach based on the local thermodynamics

conditions, as defined in (Emanuel 1988), following the

calculations of Bister and Emanuel (2002).
d Tropical cyclone genesis index (TCGI): empirical

genesis index following the formulation of Tippett

et al. (2011) and Camargo et al. (2014).

This formulation of TCGIwas chosen due to facilitate a

comparison with NTC, as the integrated value of TCGI

gives the predicted NTC by the index. This is not the case

for most genesis indices. Furthermore, Menkes et al.

(2012) have shown that TCGI has a performance similar

to or even superior to other genesis indices. The clima-

tology of all environmental variables is calculated using

either 30 years or all years available if the number of

years is smaller than 30. When we integrate the envi-

ronmental variables we consider only the ocean grid

points, in the Northern Hemisphere tropics (08–308N)

for the months of August to October (ASO) and in the

SouthernHemisphere tropics (308S–0) for themonths of

January to March (JFM). As in the case of NTC and

ACE, we exclude the South Atlantic and the southeast

Pacific (east of 2508E) in our analysis. Similarly, the

biases in the models’ environmental field climatologies

relative to the ERA-Interim climatology are quantified

using two measures: spatial correlation and root-mean-

square error. These quantities are calculated for each

model and environmental variable, in the tropical

region of each hemisphere in their respective TC season

(ASO and JFM) over the ocean. The high-resolution

models (P and W) and ERA-Interim are interpolated

to a common uniform 18 grid for these calculations. A

similar interpolation is performed for the low-resolution

models (C), but using a 28 uniform grid instead.

3. Results

a. Models, TC climatology

To give an overview of the models, TC climatology,

Figs. 1 and 2 show the first position and the tracks for

5 years (minimum number of years available across all

models) for the models, reanalysis, and observations.

For the models that have more than 5 years of simula-

tion available, the years were chosen as to have the

maximum overlap among the models. Figure 3 shows

the track density, using all years available in each case

(varying from 5 to 30 years) using a grid box of size of

48 for all models. It is clear from Figs. 1–3 that many

low-resolution models (C1–C14) have a very unreal-

istic climatology of TC-like storms, with very few storms

and in many cases no TC-like storms in some basins,

especially in the Atlantic. This is not restricted to the

CMIP5-type models; these strong biases are still pres-

ent in some of the HWG (e.g., W2, W6) and MDTF

models (e.g., P8), all of which have 18 resolution.

Furthermore, in observations the TC activity in the

Southern Hemisphere is about half of the Northern

Hemisphere, and many models do not reproduce this

difference.

These model biases can be seen in more detail in the

distributions of NTC and ACE per year for all models,

reanalysis, and observations shown in Fig. 4. It is clear

that the models in the HWG (W1–W6) and and MDTF

(P1–P10) ensembles simulate a number of TCs much

closer to observations than the CMIP5 models. The

exception of the HWG models is W2, which used the

observed threshold for defining TCs in that model

(Wehner et al. 2015), while other models of the same

resolution use a resolution-dependent threshold (Walsh

et al. 2007). Some of the high-resolution models actually

produce too many storms compared with observations,

in particular P2, P3, and W5. In contrast, most models

and the reanalysis have ACE values that are too low

compared with observations, indicating that their TCs

are too weak, which could be expected based on their

horizontal resolution (Davis 2018). The only exceptions

are P4, P5, andW1, which have a bias toward high values

ofACE. These threemodels are different versions of the

CAM5 model at 0.258, which indicates some specific

characteristic of this particular model that leads to strong

storms.Various studies (Zarzycki 2016; Scoccimarro et al.

2017; Li and Sriver 2018) showed that this bias can be
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improved by coupling the atmospheric model to an ocean

model, instead of using fixed SSTs.

b. Dependence on horizontal resolution

The first point we examine is how the models’ TC

climatology is dependent on model horizontal resolu-

tion. Figure 5 shows scatterplots between NTC and

ACE with model horizontal resolution for the tropics

and by hemisphere. There is some dependence of NTC

on model resolution, with higher values of NTC and

ACE as the the model horizontal resolution increases.

This relationship is stronger for models with resolution

finer than 18. In contrast, for low-resolution models

there is a much weaker relationship between NTC and

ACE and model resolution. However, despite some

resolution dependence, models with the same resolution

can have very different values of NTC, with a substantial

spread among models with the same resolution, for

either low-resolution (e.g., models with 28) or high-

resolution (e.g., models with 0.58) models. The spread

can be large for ACE as well, especially across high-

resolution models. If we separate NTC and ACE by

hemisphere (Figs. 5c–f), there is a similar behavior in both

hemispheres. While most high-resolution models are able

to replicate the observed behavior of a higher level of TC

activity in the Northern Hemisphere than in the Southern

Hemisphere, this is not the case for low-resolutionmodels,

which have similar levels of activity in both hemispheres.

(Note that Fig. S4 in the online supplemental material is

similar to Figs. 5c–f, but instead of separating the models

by resolution, the models are separated by tracking rou-

tine. Both figures are very similar, showing that this anal-

ysis is not sensitive to the tracking algorithm used.)

Figure 6 shows scatterplots of high percentiles of TC

maximum surface wind speed with resolution. These are

computed for all model TCs in the Northern Hemisphere

FIG. 1. Five years of first position locations of TC-like storms in models (P1–P10, W1–W6, C1–C14), reanalysis (R), and observations

(O). Data for the years 1991–95were used for reanalysis, observations, andmodels C1–C14 and P1–P10, if available. In the case ofW1–W6

the first five consecutive years were considered.
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tropics in ASO. The values of the 99th, 95th, and 90th

percentiles of the distribution for each model are shown.

The 99th percentile regression line is the steepest one in

the top panel, showing a stronger dependence on reso-

lution for the most intense storms in low-resolution

models. Similarly to what was already noted for NTC

and ACE, models with similar resolution can have very

different values of maximum wind speed, making clear

that resolution is not the only factor that determines how

intense the models’ TCs can be.

c. Environmental fields

We now examine the biases in the climatology of the

models’ environmental fields associated with TC ac-

tivity. Figures 7–9 show the anomalies of the vertical

shear, relative humidity at 600 hPa and PI compared

with ERA-Interim climatology, which is also shown in

all figures. The anomalies in the Northern Hemisphere

are calculated in ASO and in the Southern Hemisphere

in JFM.

There is large range in the anomalies of the models for

the vertical shear (Fig. 7). While some models have very

small biases across the globe, such as P2, P3, and P6, others

have large anomalies. P7 has large positive anomalies in

the tropics, in particular near the date line. Furthermore, in

many models the tropical Atlantic vertical shear is too

strong (P4, P5, P7, W1, C7, C8, C9, C10, C12, and C13). In

contrast, the vertical shear is too weak in the north Indian

Ocean in a fewmodels, in particular P4,W1,W2,W6, C10,

and C12. It should be noted though that the north Indian

Ocean has a minimum of TC activity in ASO due to the

high wind shear associated with the Indian monsoon.

In the case of relative humidity (Fig. 8), the values in

variousmodels are toohigh across bothhemispheres, such as

P4, P7, P9, P10, W3, W5, C4, and C12. In contrast, other

models tend to have negative biases in some regions and

FIG. 2. Five years of tracks of TC-like storms in models (P1–P10, W1–W6, C1–C14), reanalysis (R), and observations (O). Data for the

years 1991–95 were used for reanalysis, observations, and models C1–C14 and P1–P10, if available. In the case of W1–W6 the first five

consecutive years were considered.
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positive in others (P3, W1, W6, C2, C5, C10). Many models

have their largest biases in relative humidity in the equatorial

region (P3, W1, W2, C2), in particular in the central Pacific.

Potential intensity (PI) anomalies are shown in Fig. 9.

A fewmodels’ biases stand out in this case; while P4 PI is

too high in both hemispheres, C12 PI is too low. In

contrast, P5 and P6 have strong negative anomalies in

the Northern Hemisphere only. Many CMIP5 models

(C) show too strong values of PI in the eastern Pacific in

both hemispheres (C4, C5, C6, C8, C9, C10, C11, C12,

C13, and C14). As this type of bias is not present in any

of the models forced with fixed SST (most P models and

W models), this bias is probably related to coupling.

For completeness we show similar plots for omega at

500 hPa, relative vorticity at 850 hPa, and TCGI in Figs

S1, S2, and S3 in the online supplementalmaterial. In the

case of Omega (Fig. S1), many P and W models have

positive biases in the Indo-Pacific equatorial region,

with exception of P7 and P10, which show negative

biases in the same region. In contrast, the relative vor-

ticity biases (Fig. S2) have dipole anomaly patterns in

both hemispheres, indicative of a shift in location of the

vorticity in the models. Models typically have positive

biases in TCGI (Fig. S3) in the regions of maximum TC

activity, and negative biases outside of that region.

In an attempt to quantify these results, Fig. 10 shows

scatterplots of the spatial correlations and root-mean-

square error (RMSE) of these environmental fields in

both hemispheres (in the tropics and over the ocean),

relative to the ERA-Interim reanalysis. It is clear across

the panels that theCMIP5 (C)models typically have lower

correlations and higher RMSE than the P and W models.

This is not surprising, given that the C models have lower

resolution and are coupled, which tend to lead to large

biases. This is particularly true for the spatial correlations

of relative humidity, potential intensity, and TCGI.

FIG. 3. Track density (mean of track passages per grid point) of TC storms in models (P1–P10, W1–W6, C1–C14), reanalysis (R), and

observations (O) using all years available for eachmodel (as shown in Tables 1–3). A common uniform grid of 48was used and normalized

by the number of years available in each case.

1 JUNE 2020 CAMARGO ET AL . 4471



Another interesting result is that for both omega

Fig. 10d and relative vorticity Fig. 10e, there is a clear

separation for all model types by hemisphere, with

lower RMSE in the Northern Hemisphere and higher

in the Southern Hemisphere. Interestingly, the spatial

correlation in the Northern Hemisphere reaches lower

values than in the Southern Hemisphere.

While in the case of vertical shear Fig. 10a there is

an almost linear relationship between RMSE and

correlations, with low RSME values associated with

high correlations, and the opposite for high RSME.

However, this is not the case for other variables. In

particular, for the relative humidity (Fig. 10b), many

models have high spatial correlations, but a large

range of RSME values, indicating that the models can

replicate the reanalysis pattern well, but not its mag-

nitude. This is also typically the case for TCGI (Fig. 10f)

for P and W models, but not for all C models. While

the P and W models have high correlations and low

RMSE for PI (Fig. 10c), with exception of one

FIG. 4. Distributions of (a) NTC and (b) ACE per year distributions in models, reanalysis, and observations. Model

labels are defined in Tables 1–3.
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outlier, C models have much lower spatial correlations,

probably related to the biases in the eastern Pacific

noted above.

d. Relationship of environmental fields and TC
climatology

Wenext examinewhether there is a relationship between

climatological environmental fields and climatological TC

activity in the models—that is, if a model has a more con-

ducive environment forTC formationand/or intensification,

does it have more TCs or are there more TCs that reach

higher intensity values?

To examine this question we integrated the climato-

logical environmental fields in the tropics in the season

of interest (ASO in the Northern Hemisphere, JFM in

the Southern Hemisphere) for each model and related

FIG. 5. Scatterplots of (a),(c),(e) NTC and (b),(d),(f) ACE vs model horizontal resolution in degrees. Models

labels are defined in Tables 1–3. (top) The tropical mean, (middle) the Northern Hemisphere, and (bottom) the

Southern Hemisphere; C (CMIP5) models are shown in blue, W (HWG) models in red, P (process-oriented)

models in green, and observations (O) and reanalysis (R) in black.
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this to the corresponding NTC andACE, as described in

section 2. Given the very different range of values in NTC

and ACE for low-resolution and high-resolution models,

we split each scatterplot in two, one for low-resolution

models (Cmodels) and another for high-resolutionmodels

(W and P models). The resulting scatterplots for NTC are

given in Figs. 11 and 12, for the Northern and Southern

Hemisphere, respectively. Similar figures for ACE in each

hemisphere are shown in Figs. 13 and 14. In each panel

the linear fit and corresponding correlation coefficient

are also shown.

Figures 11–14 make clear that there is no coherent

relationship between the mean environmental conditions

across the models and the mean TC climatology. For

instance, large values of midlevel relative humidity

are important for tropical cyclogenesis (Gray 1979;

Emanuel and Nolan 2004). Nolan et al. (2007) and

Rappin et al. (2010) found that reducing the free

troposphere saturation deficit is critical for intensifica-

tion. While low-resolution models with higher climato-

logical relative humidity do generate more TCs in the

Northern Hemisphere (Fig. 11a), that is not the case in

the SouthernHemisphere (Fig. 12a), or for high-resolution

models (Figs. 11b, and 12b) (actually, the opposite re-

lationship is observed). Similarly, while there is a posi-

tive relationship between relative humidity and ACE in

FIG. 6. Scatterplots of wind speeds percentiles (99%, 95%, and 90%) vs model horizontal

resolution in degrees for the Northern Hemisphere for (a) low-resolution and (b) high-

resolution models. Model labels are defined in Tables 1–3.
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both hemispheres for low-resolution models (Figs. 13a

and 14a), this is not the case for high-resolution models

(Figs. 13b and 14b). In Figs. 11–14 we only show our

results using the midlevel relative humidity, but sim-

ilar plots were obtained using saturation deficit and

column relative humidity.

In the case of relative vorticity, we would expect a

higher number of TCs for models with higher mean cli-

matological relative vorticity values (Gray 1979; Emanuel

and Nolan 2004), as these models potentially could have

more disturbances that lead to more TCs. Tippett et al.

(2011) showed that the relationship of relative vorticity to

genesis has a threshold beyond which higher values of

vorticity are not related to more frequent cyclogenesis.

While there is a positive relationship with NTC and

ACE in the Northern Hemisphere for low-resolution

models (Figs. 11c and 13c) and forACE for high-resolution

models in the Northern Hemisphere (Fig. 13d), the oppo-

site occurs for low-resolution models in the Southern

Hemisphere for NTC and ACE (Figs. 12c and 14c) and

FIG. 7. Anomalies of vertical wind shear (m s21) for all models (C1–C14, W1–W6, P1–P14) relative to the ERA-Interim reanalysis

climatology (R): ASO in the Northern Hemisphere, JFM in the Southern Hemisphere.
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for NTC in high-resolution models in the Southern

Hemisphere (Fig. 12d), and there is no relationship at

all in the other cases.

Vertical wind shear has a strong control on the cli-

matology of TCs (Gray 1968), with developing storms

tending to form under low values of vertical wind shear

(McBride and Zehr 1981; Tang and Emanuel 2010).

Large-scale vertical wind shear also tends to weaken

tropical cyclones (DeMaria and Kaplan 1994; Tang and

Emanuel 2010). For the vertical wind shear [Figs. 11–14,

panels (e) and (f)], there is a decrease in NTC and/or

ACE with the magnitude of the climatological verti-

cal wind shear, as expected. But the relationship is

weak and in one case (Fig. 12e) the relationship is the

opposite.

There is a strong relationship between observed TC

intensity and PI (Emanuel 2000;Wing et al. 2007; Kossin

andCamargo 2009), with higher values of PI corresponding

FIG. 8. Anomalies of relative humidity at 600 hPa (%) for all models (C1–C14, W1–W6, P1–P14) relative to the ERA-Interim reanalysis

climatology (R): ASO in the Northern Hemisphere, JFM in the Southern Hemisphere.
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to stronger TCs in a large range of time scales and

spatial scales. Empirically, genesis is rarely observed

for PI values below 40m s21 (Emanuel 2018) and PI is

used in various genesis indices (Emanuel and Nolan

2004; Emanuel 2010; Camargo et al. 2014), as well as

being one of the components of the ventilation index

(Tang and Emanuel 2012a,b). While for low-resolution

models there is a positive relationship between PI and

NTC, and PI and ACE [Figs. 11–14, panels (g)], the

same is not true for high-resolutionmodels [panels (h)],

with a decrease of NTC in the Northern Hemisphere

and of ACE in both hemispheres, in contrast to

observations.

Murakami and Wang (2010) added vertical velocity

as an additional predictor to the Emanuel and Nolan

(2004) genesis index, arguing that a high frequency of

TC genesis correspond to areas with large upward mo-

tion and that this vertical motion was not fully taken into

account in the original genesis index. Zhao and Held

(2012) explored the relationship of TC activity with

various environmental variables using one of the

climate models from our study (P3) and found that

the strongest relationship was with vertical velocity at

500 hPa. Furthermore, the same authors argued in Held

and Zhao (2011) that the atmospheric vertical mass flux

can be useful in understanding the reduction of TC

hurricane activity in their idealized climate change

experiments. However, Camargo et al. (2014) did not

find a coherent response of vertical velocity with this

reduction in genesis in a perfect model experiment.

FIG. 9. Anomalies of potential intensity (PI) (m s21) for all models (C1–C14, W1–W6, P1–P14) relative to

the ERA-Interim reanalysis climatology (R): ASO in the Northern Hemisphere, JFM in the Southern

Hemisphere.
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Here we find a positive relationship between vertical

velocity andTC activity diagnostics only for low-resolution

models [Figs. 11–14, panels (i)], not for high-resolution

models [Figs. 11–14, panels (j)].

We also show scatterplots of NTC and ACE with one

genesis index, namely TCGI developed by Tippett

et al. (2011). We performed the same analysis with

other versions of this index, using other predictors, as

discussed in Camargo et al. (2014) (not shown). Similar

to other genesis indices (e.g., Camargo et al. 2005;

Camargo 2013; Wehner et al. 2015), there is not a

strong relationship between the model climatological

FIG. 10. Scatterplots of the values of the spatial correlation and root-mean-square error between the models and

ERA-Interim reanalysis climatology of environmental variables [(a) vertical wind shear, (b) relative humidity at

600 hPa, (c) potential intensity, (d) omega at 500 hPa, (e) relative vorticity at 850 hPa, and (f) TCGI] over the ocean

for ASO in the Northern Hemisphere (08–308N) and JFM in the Southern Hemisphere (308S–08). P1–P10 models

are shown in green, W1–W6 models in red, and C1–C14 models in blue. Northern (Southern) Hemisphere values

are shown in circles (diamonds). The root-mean-square errors are normalized by the mean value of the reanalysis

climatology in the region and season considered.
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TC activity and the climatological values of these

indices in the same models, although the relation-

ship between NTC and genesis indices seemed to

improve with horizontal resolution for a few models

(Camargo et al. 2005). However, changes in TC activity

due to climate variability (e.g., El Niño–Southern
Oscillation or volcano activity) are indeed reflected

in changes in these indices (Camargo et al. 2005;

Pausata and Camargo 2019; Camargo and Polvani

2019). Overall, similar to other variables, we do not

obtain a coherent response of the mean climatological

TCGI across models in our analysis [Figs. 11–14, panels

(k) and (l)].

To try to examine if the lack of a robust relation-

ships between NTC and ACE is influenced by the

models’ resolution, we repeated this analysis for two

different groups of models: in the first one, only

models with resolution between 1.48 and 0.758 are

considered, and in the second only models with reso-

lution of 0.58 or higher. The results (shown in Figs. S2–

S9) are very consistent with the ones shown above:

there is no robust relationship between the environ-

mental variables and NTC and ACE, even for models

with similar resolutions and excluding models with

unrealistic TC climatology. The only exception was

found for models with resolution of 0.58 and higher, in

FIG. 11. Scatterplots of mean climatological NTC and environmental fields for the tropical Northern Hemisphere in ASO; C (CMIP5)

models are shown in blue,W (HWG)models in red,P (process-oriented) models in green, reanalysis (R) in black. Statistically significance

correlations at the 95th significance levels are shown in bold.
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which NTC and ACE decrease with increasing verti-

cal shear and the relationship is significant in 3 of the 4

cases examined. We repeated this analysis grouping

the analysis by tracking routine for the models tracked

with either the Camargo–Zebiak or Zhao/Vitart tracking

algorithms. The results are similar (Figs. S13–S16), with

no robust relationship between the climatological envi-

ronmental variables and NTC and ACE for these two

tracking algorithms across resolutions. This is a good in-

dication that our results are not sensitive to tracking

routine used, especially in the case of ACE (Zarzycki

and Ullrich 2017).

4. Conclusions

It is common in the literature to try to explain biases

in climate models’ TC climatology using biases in these

models’ environmental variables climatology. However,

as far as we are aware there is no study that shows that

such relationship is actually valid. Here we explore this

relationship using 30 climate models from three differ-

ent multimodel ensembles at various resolutions. We

show that there is no coherent relationship between the

mean state of these models, represented here by a large

number of environmental variables usually associated

FIG. 12. Scatterplots of mean climatological NTC and environmental fields for the tropical Southern Hemisphere in JFM; C (CMIP5)

models are shown in blue,W (HWG) models in red, P (process-oriented) models in green, reanalysis (R) in black. Statistical significance

correlations at the 95th significance levels are shown in bold.
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with TC activity, and the mean TC model climatology.

In particular, there is no universal relationship between

the simulated large-scale environment and TC activity,

as while there are some relationships between environ-

ment and TC activity in certain classes of models, these

relationships are not consistent across all models. This

lack of coherent relationship between the enviroment

and TC activity occurrs even if only models with similar

resolution are considered, and by excluding models with

low-resolution and unrealistic TC climatology.

Our results are not surprising, given the large num-

ber of studies that explored the sensitivity of model

TC climatology to various model characteristics (e.g.,

model physics, dynamical core, tracking methodology,

etc.). However, given the widespread use of the large-

scale environmental fields as an explanation to models’

TC biases, it is important to show that this standard

practice is actually not valid. To understand model TC

climatological biases more in-depth diagnostics are

necessary, such as the process-based diagnostics devel-

oped by Kim et al. (2018), Wing et al. (2019), and Moon

et al. (2020). Additional information may also be gained

by working to understand of the response of pre-TC

synoptic disturbances, or ‘‘TC seeds,’’ in addition to the

large-scale environmental impact on TC genesis (Vecchi

et al. 2019).

FIG. 13. Scatterplots of mean climatological ACE and environmental fields for the tropical Northern Hemisphere in ASO; C (CMIP5)

models are shown in blue,W (HWG)models in red,P (process-oriented)models in green, reanalysis (R) in black. None of the correlations

are statistically significant at the 95th significance level.
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Furthermore, TCs do not respond passively to the

large-scale environment; they can influence it (e.g.,

Sobel and Camargo 2005), although the exact magni-

tude and nature of this influence is not completely un-

derstood. This could be another reason why there is a

lack of relationship between the simulated environment

and TCs—themodeled environmentmight be partially a

consequence of the modeled TC activity and this inter-

action might be model dependent.

One of the caveats of our analysis is that it can

be sensitive to the tracking algorithm used by each

modeling group. In the case of low-resolution models,

this is not an issue, as the same tracking algorithm

was used across models. The differences in track-

ing algorithm could potentially influence our results

for high-resolution models, but as the sensitivity to

tracking algorithm is not as critical for strong TCs

and high-resolution models, we expect our results to

be robust.

It is important to stress that our analysis was restricted

to the relationship between the models’ climatological

environmental conditions and models’ TC climatology.

This does not preclude the existence of such relationship

in nature. Furthermore, our results do not have impli-

cations for the ability of climate models to simulate TC

variability, in particular the modulation of TC activity

FIG. 14. Scatterplots of mean climatological ACE and environmental fields for the tropical Southern Hemisphere in JFM; C (CMIP5)

models are shown in blue,W (HWG)models in red,P (process-oriented)models in green, reanalysis (R) in black. None of the correlations

are statistically significant at the 95th significance level.

4482 JOURNAL OF CL IMATE VOLUME 33



by modes of climate variability (e.g., El Niño–
Southern Oscillation or the Madden–Julian oscilla-

tion). It is well established that the variability of TC

activity in models has the correct association with these

climate modes, even if the model TC climatology is in-

correct (Shaevitz et al. 2014; Wang et al. 2014; Han et al.

2016; Lee et al. 2018). Similarly, the response of the TC

activity in models to climate change is not affected by our

conclusions.

Acknowledgments. This work is a contribution to

the process-oriented diagnostic effort of the NOAA

(National Oceanic and Atmospheric Administration),

MAPP (Modeling, Analysis, Predictions and Projections)

Model Diagnostics Task Force, who also contributed

with the simulations of two models in this study. This

workwas supported byNOAA’s Climate ProgramOffice’s

Modeling, Analysis, Predictions, and Projections program

through Grant NA15OAR4310087. The authors thank all

the members of U.S. CLIVARHurricaneWorking Group

(HWG) for their contribution to this significant effort, in

particular those who produced the model simulations

used in this study. We would also like to thank Naomi

Henderson for managing the HWG dataset. SJC, AHS,

JDOS, and MK acknowledge support of NASA Grant

80NSSC17K0196. ES acknowledges support from the

project PRIMAVERA, Grant Agreement 641727 of the

Horizon 2020 research program. GAV is supported in

part under NOAA Award NAOAR4320123. The state-

ments, findings, conclusions, and recommendations are

those of the authors anddonot necessarily reflect the views

of theNational Oceanic andAtmosphericAdministration,

or the U.S. Department of Commerce.

Data availability statement: The CMIP5 and the

Hurricane Working Group model datasets are avail-

able at https://esgf-node.llnl.gov/projects/cmip5/ and

http://storms.ldeo.columbia.edu/. The ERA Interim

reanalysis data canbeobtained fromhttps://www.ecmwf.int/

en/forecasts/datasets/reanalysis-datasets/era-interim. The

best-track dataset from the National Hurricane Center and

the Joint Typhoon Warning Center are available at https://

www.nhc.noaa.gov/data/ and https://www.metoc.navy.mil/

jtwc/jtwc.html?best-tracks. The data underlying the figures

from this manuscript are available at the Columbia

University Academic Commons repository at https://

academiccommons.columbia.edu/doi/10.7916/d8-t7y6-3f55.

REFERENCES

Bacmeister, J. T., K. A. Reed, C. Hannay, P. Lawrence, S. Bates,

J. E. Truesdale, N. Rosenbloom, andM. Levy, 2018: Projected

changes in tropical cyclone activity under future warming sce-

narios using a high-resolution climate model. Climatic Change,

146, 547–560, https://doi.org/10.1007/s10584-016-1750-x.

Bao,Q., andCoauthors, 2013: TheFlexibleGlobalOcean–Atmosphere–

Land Systemmodel, spectral version 2: FGOALS-s2.Adv.Atmos.

Sci., 30, 561–576, https://doi.org/10.1007/s00376-012-2113-9.

Bell, G. D., and Coauthors, 2000: Climate assessment for 1999.

Bull. Amer.Meteor. Soc., 81 (6), S1–S50, https://doi.org/10.1175/

1520-0477(2000)81[s1:CAF]2.0.CO;2.

Bengtsson, L., H. Böttger, and M. Kanamitsu, 1982: Simulation of

hurricane-type vortices in a general circulation model. Tellus,

34, 440–457, https://doi.org/10.3402/tellusa.v34i5.10830.

——, M. Botzet, and M. Esch, 1996: Will greenhouse gas-induced

warming over the next 50 years lead to higher frequency and

greater intensity of hurricanes? Tellus, 48A, 57–73, https://

doi.org/10.3402/tellusa.v48i1.11632.

Bhatia, K., G. Vecchi, H. Murakami, S. Underwood, and J. Kossin,

2018: Projected response of tropical cyclone intensity and in-

tensification in a global climate model. J. Climate, 31, 8281–

8303, https://doi.org/10.1175/JCLI-D-17-0898.1.

Bister, M., and K. A. Emanuel, 2002: Low frequency variability of

tropical cyclone potential intensity. 1. Interannual to inter-

decadal variability. J. Geophys. Res., 107, 4801, https://doi.org/

10.1029/2001JD000776.

Bretherton, C. S., and S. Park, 2009: A new moist turbulence param-

eterization in the Community AtmosphereModel. J. Climate, 22,

3422–3448, https://doi.org/10.1175/2008JCLI2556.1.

——, M. E. Peters, and L. E. Back, 2004: Relationships between

water vapor path and precipitation over the tropical oceans.

J. Climate, 17, 1517–1528, https://doi.org/10.1175/1520-

0442(2004)017,1517:RBWVPA.2.0.CO;2.

Broccoli, A. J., and S. Manabe, 1990: Can existing climate models

be used to study anthropogenic changes in tropical cyclone

climate? Geophys. Res. Lett., 17, 1917–1920, https://doi.org/

10.1029/GL017i011p01917.

Bruyère, C. L., G. J. Holland, and E. Towler, 2012: Investigating

the use of a genesis potential index for tropical cyclones in the

NorthAtlantic basin. J. Climate, 25, 8611–8626, https://doi.org/

10.1175/JCLI-D-11-00619.1.

Camargo, S. J., 2013: Global and regional aspects of tropical cy-

clone activity in the CMIP5 models. J. Climate, 26, 9880–9902,

https://doi.org/10.1175/JCLI-D-12-00549.1.

——, and S. E. Zebiak, 2002: Improving the detection and tracking

of tropical storms in atmospheric general circulation models.

Wea. Forecasting, 17, 1152–1162, https://doi.org/10.1175/1520-

0434(2002)017,1152:ITDATO.2.0.CO;2.

——, and A. G. Barnston, 2009: Experimental seasonal dynamical

forecasts of tropical cyclone activity at IRI. Wea. Forecasting,

24, 472–491, https://doi.org/10.1175/2008WAF2007099.1.

——, and A. A. Wing, 2016: Tropical cyclones in climate models.

Wiley Interdiscip. Rev. Climate Change, 7, 211–237, https://

doi.org/10.1002/wcc.373.

——, and L. M. Polvani, 2019: Little evidence of reduced global

tropical cyclone activity following recent volcanic eruptions.

npj Climate Atmos. Sci., 2, 14, https://doi.org/10.1038/S41612-

019-0070-Z.

——, A. G. Barnston, and S. E. Zebiak, 2005: A statistical assess-

ment of tropical cyclone activity in atmospheric general cir-

culation models. Tellus, 57A, 589–604, https://doi.org/10.3402/

tellusa.v57i4.14705.

——, K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis po-

tential index to diagnose ENSO effects on tropical cyclone gen-

esis. J. Climate, 20, 4819–4834, https://doi.org/10.1175/JCLI4282.1.

——, A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007b:

Tropical cyclone genesis potential index in climatemodels.Tellus,

59A, 428–443, https://doi.org/10.1111/j.1600-0870.2007.00238.x.

1 JUNE 2020 CAMARGO ET AL . 4483

https://esgf-node.llnl.gov/projects/cmip5/
http://storms.ldeo.columbia.edu/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.nhc.noaa.gov/data/
https://www.nhc.noaa.gov/data/
https://www.metoc.navy.mil/jtwc/jtwc.html?best-tracks
https://www.metoc.navy.mil/jtwc/jtwc.html?best-tracks
https://academiccommons.columbia.edu/doi/10.7916/d8-t7y6-3f55
https://academiccommons.columbia.edu/doi/10.7916/d8-t7y6-3f55
https://doi.org/10.1007/s10584-016-1750-x
https://doi.org/10.1007/s00376-012-2113-9
https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2
https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2
https://doi.org/10.3402/tellusa.v34i5.10830
https://doi.org/10.3402/tellusa.v48i1.11632
https://doi.org/10.3402/tellusa.v48i1.11632
https://doi.org/10.1175/JCLI-D-17-0898.1
https://doi.org/10.1029/2001JD000776
https://doi.org/10.1029/2001JD000776
https://doi.org/10.1175/2008JCLI2556.1
https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2
https://doi.org/10.1029/GL017i011p01917
https://doi.org/10.1029/GL017i011p01917
https://doi.org/10.1175/JCLI-D-11-00619.1
https://doi.org/10.1175/JCLI-D-11-00619.1
https://doi.org/10.1175/JCLI-D-12-00549.1
https://doi.org/10.1175/1520-0434(2002)017<1152:ITDATO>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<1152:ITDATO>2.0.CO;2
https://doi.org/10.1175/2008WAF2007099.1
https://doi.org/10.1002/wcc.373
https://doi.org/10.1002/wcc.373
https://doi.org/10.1038/S41612-019-0070-Z
https://doi.org/10.1038/S41612-019-0070-Z
https://doi.org/10.3402/tellusa.v57i4.14705
https://doi.org/10.3402/tellusa.v57i4.14705
https://doi.org/10.1175/JCLI4282.1
https://doi.org/10.1111/j.1600-0870.2007.00238.x


——,M. K. Tippett, A. H. Sobel, G. A. Vecchi, andM. Zhao, 2014:

Testing the performance of tropical cyclone genesis indices in

future climates using the HIRAMmodel. J. Climate, 27, 9171–

9196, https://doi.org/10.1175/JCLI-D-13-00505.1.

——, A. H. Sobel, A. D. Del Genio, J. A. Jonas, M. Kelley, Y. Lu,

D. A. Shaevitz, and N. Henderson, 2016: Tropical cyclones

in the GISS ModelE2. Tellus, 68A, 31494, https://doi.org/

10.3402/tellusa.v68.31494.

Camp, J., and Coauthors, 2018: Skilful multi-week tropical cyclone

prediction in ACCESS-S1 and the role of the MJO. Quart.

J. Roy. Meteor. Soc., 144, 1337–1351, https://doi.org/10.1002/

qj.3260.

——, and Coauthors, 2019: The western Pacific subtropical high

and tropical cyclone landfall: Seasonal forecasts using theMet

Office GloSea5 system. Quart. J. Roy. Meteor. Soc., 145, 105–

116, https://doi.org/10.1002/qj.3407.

Cesana, G., A. D. Del Genio, A. S. Ackerman, M. Kelley,

G. Elsaesser, A. M. Fridlind, Y. Cheng, and M.-S. Yao, 2019:

Evaluating models’ response of tropical low clouds to SST

forcings using CALIPSO observations. Atmos. Chem. Phys.,

19, 2813–2832, https://doi.org/10.5194/acp-19-2813-2019.

Chand, S. S., K. J. Tory, H. Ye, and K. J. E. Walsh, 2017: Projected

increase in El Niño-driven tropical cyclone frequency in the

Pacific. Nat. Climate Change, 7, 123–127, https://doi.org/

10.1038/nclimate3181.

Cherchi, A., and Coauthors, 2019: Global mean climate and main

patterns of variability in the CMCC-CM2 coupled model.

J. Adv. Model. Earth Syst., 11, 185–209, https://doi.org/10.1029/

2018MS001369.

Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The

Joint Typhoon Warning Center tropical cyclone best-tracks,

1945-2000. Naval Research Laboratory Tech. Rep. NRL/MR/

7540-02-16, 112 pp.

Daloz, A. S., and Coauthors, 2015: Cluster analysis of downscaled

and explicitly simulated North Atlantic tropical cyclone

tracks. J. Climate, 28, 1333–1361, https://doi.org/10.1175/

JCLI-D-13-00646.1.

Davis, C. A., 2018: Resolving tropical cyclone intensity in models.

Geophys. Res. Lett., 45, 2082–2087, https://doi.org/10.1002/

2017GL076966.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis:

Configuration and performance of the data assimilation sys-

tem.Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/

10.1002/qj.828.

Del Genio, A. D., J. Wu, A. G. Wolf, Y. Chen, M.-S. Yao, and

D. Kim, 2015: Constraints on cumulus parameterization from

simulations of observed MJO events. J. Climate, 28, 6419–

6442, https://doi.org/10.1175/JCLI-D-14-00832.1.

Delworth, T. L., and Coauthors, 2012: Simulated climate and

climate change in the GFDLCM2.5 high-resolution coupled

climate model. J. Climate, 25, 2755–2781, https://doi.org/10.1175/

JCLI-D-11-00316.1.

DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane

Intensity Prediction Scheme (SHIPS) for the Atlantic basin.

Wea. Forecasting, 9, 209–220, https://doi.org/10.1175/1520-

0434(1994)009,0209:ASHIPS.2.0.CO;2.

——, J.A. Knaff, andB.H. Conell, 2001:A tropical cyclone genesis

parameter for the tropical Atlantic. Wea. Forecasting, 16,

219–233, https://doi.org/10.1175/1520-0434(2001)016,0219:

ATCGPF.2.0.CO;2.

Donner, L. J., and Coauthors, 2011: The dynamical core, physical

parameterizations, and basic simulation characteristics of

the atmospheric component of the GFDL global coupled

model CM3. J. Climate, 24, 3484–3519, https://doi.org/10.1175/

2011JCLI3955.1.

Duvel, J.-P., S. J. Camargo, and A. H. Sobel, 2017: Role of

convection scheme in modeling initiation and intensifica-

tion of tropical depressions over the North Atlantic. Mon.

Wea. Rev., 145, 1495–1509, https://doi.org/10.1175/MWR-

D-16-0201.1.

Emanuel, K. A., 1988: The maximum intensity of hurricanes.

J. Atmos. Sci., 45, 1143–1155, https://doi.org/10.1175/1520-

0469(1988)045,1143:TMIOH.2.0.CO;2.

——, 2000: A statistical analysis of tropical cyclone intensity.

Mon. Wea. Rev., 128, 1139–1152, https://doi.org/10.1175/

1520-0493(2000)128,1139:ASAOTC.2.0.CO;2.

——, 2010: Tropical cyclone activity downscaled from NOAA-

CIRES reanalysis, 1908–1958. J. Adv.Model. Earth Syst., 2 (1),

https://doi.org/10.3894/JAMES.2010.2.1.

——, 2018: 100 years of progress in tropical cyclone research.ACentury

of Progress in Atmospheric and Related Sciences: Celebrating the

American Meteorological Society Centennial, Meteor. Monogr.,

15.1–15.68, https://doi.org/10.1175/AMSMONOGRAPHS-D-

18-0016.1.

——, and D. S. Nolan, 2004: Tropical cyclone activity and global

climate. Bull. Amer. Meteor. Soc., 85, 666–667.

Gent, P. R., and Coauthors, 2011: The Community Climate System

Model version 4. J. Climate, 24, 4973–4991, https://doi.org/

10.1175/2011JCLI4083.1.

Gettelman, A., and H. Morrison, 2015: Advanced two-moment

bulk microphysics for global models. Part I: Off-line tests and

comparison with other schemes. J. Climate, 28, 1268–1287,

https://doi.org/10.1175/JCLI-D-14-00102.1.

Gray, W. M., 1968: Global view of the origin of tropical

disturbances and storms. Mon. Wea. Rev., 96, 669–

700, https://doi.org/10.1175/1520-0493(1968)096,0669:

GVOTOO.2.0.CO;2.

——, 1979: Hurricanes: Their formation, structure and likely role

in the tropical circulation. Meteorology over the Tropical

Oceans, D. B. Shaw, Ed., Royal Meteorological Society,

155–218.

Gregory, P. A., J. Camp, K. Bigelow, and A. Brown, 2019: Sub-

seasonal predictability of the 2017–2018 Southern Hemisphere

tropical cyclone season. Atmos. Sci. Lett., 20, e886, https://

doi.org/10.1002/asl.886.

Haarsma, R. J., J. F. B. Mitchell, and C. A. Senior, 1993: Tropical

disturbances in a GCM. Climate Dyn., 8, 247–257, https://

doi.org/10.1007/BF00198619.

Han, R., and Coauthors, 2016: An assessment of multi-model

simulations on the variability of western North Pacific tropical

cyclones and its association with ENSO. J. Climate, 29, 6401–

6423, https://doi.org/10.1175/JCLI-D-15-0720.1.

Held, I. M., and M. Zhao, 2011: The response of tropical cyclone

statistics to an increase in CO2 with fixed sea surface tem-

peratures. J. Climate, 24, 5353–5364, https://doi.org/10.1175/

JCLI-D-11-00050.1.

Horn, M., and Coauthors, 2014: Tracking scheme dependence of

simulate tropical cyclone response to idealized climate simu-

lations. J. Climate, 27, 9197–9213, https://doi.org/10.1175/

JCLI-D-14-00200.1.

Jones, C. D., and Coauthors, 2011: The HadGEM2-ES im-

plementation of CMIP5 centennial simulations.Geosci.Model

Dev., 4, 543–570, https://doi.org/10.5194/gmd-4-543-2011.

Kim, D., A. H. Sobel, A. D. Del Genio, Y. Chen, S. J. Camargo,

M.-S. Yao, M. Kelley, and L. Nazarenko, 2012: The tropical

subseasonal variability simulated in the NASA GISS general

4484 JOURNAL OF CL IMATE VOLUME 33

https://doi.org/10.1175/JCLI-D-13-00505.1
https://doi.org/10.3402/tellusa.v68.31494
https://doi.org/10.3402/tellusa.v68.31494
https://doi.org/10.1002/qj.3260
https://doi.org/10.1002/qj.3260
https://doi.org/10.1002/qj.3407
https://doi.org/10.5194/acp-19-2813-2019
https://doi.org/10.1038/nclimate3181
https://doi.org/10.1038/nclimate3181
https://doi.org/10.1029/2018MS001369
https://doi.org/10.1029/2018MS001369
https://doi.org/10.1175/JCLI-D-13-00646.1
https://doi.org/10.1175/JCLI-D-13-00646.1
https://doi.org/10.1002/2017GL076966
https://doi.org/10.1002/2017GL076966
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1175/JCLI-D-14-00832.1
https://doi.org/10.1175/JCLI-D-11-00316.1
https://doi.org/10.1175/JCLI-D-11-00316.1
https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2
https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2
https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2
https://doi.org/10.1175/2011JCLI3955.1
https://doi.org/10.1175/2011JCLI3955.1
https://doi.org/10.1175/MWR-D-16-0201.1
https://doi.org/10.1175/MWR-D-16-0201.1
https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2
https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2
https://doi.org/10.3894/JAMES.2010.2.1
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1
https://doi.org/10.1175/2011JCLI4083.1
https://doi.org/10.1175/2011JCLI4083.1
https://doi.org/10.1175/JCLI-D-14-00102.1
https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
https://doi.org/10.1002/asl.886
https://doi.org/10.1002/asl.886
https://doi.org/10.1007/BF00198619
https://doi.org/10.1007/BF00198619
https://doi.org/10.1175/JCLI-D-15-0720.1
https://doi.org/10.1175/JCLI-D-11-00050.1
https://doi.org/10.1175/JCLI-D-11-00050.1
https://doi.org/10.1175/JCLI-D-14-00200.1
https://doi.org/10.1175/JCLI-D-14-00200.1
https://doi.org/10.5194/gmd-4-543-2011


circulation model. J. Climate, 25, 4641–4659, https://doi.org/

10.1175/JCLI-D-11-00447.1.

——, and Coauthors, 2018: Process-oriented diagnosis of tropical

cyclones in high-resolution GCMs. J. Climate, 31, 1685–1702,

https://doi.org/10.1175/JCLI-D-17-0269.1.

Knutson, T. R., and Coauthors, 2013: Dynamical downscaling

projections of twenty-first-century Atlantic hurricane activity:

CMIP3 and CMIP5 model-based scenarios. J. Climate, 26,

6591–6617, https://doi.org/10.1175/JCLI-D-12-00539.1.

Kossin, J. P., and S. J. Camargo, 2009: Hurricane track variability

and secular potential intensity trends. Climatic Change, 97,

329–337, https://doi.org/10.1007/s10584-009-9748-2.

——, K. A. Emanuel, and S. J. Camargo, 2016: Past and projected

changes in western North Pacific tropical cyclone exposure.

J. Climate, 29, 5725–5739, https://doi.org/10.1175/JCLI-D-16-

0076.1.

Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane data-

base uncertainty and presentation of a new database format.

Mon. Wea. Rev., 141, 3576–3592, https://doi.org/10.1175/

MWR-D-12-00254.1.

Lee, C.-Y., S. J. Camargo, F. Vitart, A. H. Sobel, andM.K. Tippett,

2018: Subseasonal tropical cyclone genesis prediction and

MJO in the S2S dataset.Wea. Forecasting, 33, 967–988, https://

doi.org/10.1175/WAF-D-17-0165.1.

Li, H., and R. L. Sriver, 2018: Tropical cyclone activity in the high-

resolution Community Earth SystemModel and the impact of

ocean coupling. J. Adv. Model. Earth Syst., 10, 165–186,

https://doi.org/10.1002/2017MS001199.

Maloney, E. D., and Coauthors, 2019: Process-oriented evaluation

of climate and weather forecasting models. Bull. Amer. Meteor.

Soc., 100, 1665–1686, https://doi.org/10.1175/BAMS-D-18-0042.1.

Manabe, S., J. L. Holloway, and H. M. Stone, 1970: Tropical cir-

culation in a time-integration of a global model of the atmo-

sphere. J. Atmos. Sci., 27, 580–613, https://doi.org/10.1175/

1520-0469(1970)027,0580:TCIATI.2.0.CO;2.

Manganello, J. V., and Coauthors, 2012: Tropical cyclone clima-

tology in a 10-km global atmospheric GCM: Toward weather-

resolving climate modeling. J. Climate, 25, 3867–3893, https://

doi.org/10.1175/JCLI-D-11-00346.1.

——, and Coauthors, 2014: Future changes in the western North

Pacific tropical cyclone activity projected by a multidecadal

simulation with a 16-km global atmospheric GCM. J. Climate,

27, 7622–7646, https://doi.org/10.1175/JCLI-D-13-00678.1.

——, and Coauthors, 2016: Seasonal forecasts of tropical cyclone

activity in a high-atmospheric-resolution coupled prediction

system. J. Climate, 29, 1179–1200, https://doi.org/10.1175/

JCLI-D-15-0531.1.

McBride, J. L., and R. Zehr, 1981: Observational analysis of

tropical cyclone formation. Part II: Comparison of non-

developing versus non-developing systems. J. Atmos. Sci.,

38, 1132–1151, https://doi.org/10.1175/1520-0469(1981)038,1132:

OAOTCF.2.0.CO;2.

Menkes, C. E., M. Lengaigne, P. Marchesiello, N. C. Jourdain,

E. M. Vincent, J. Lefèvre, F. Chauvin, and J.-F. Royer, 2012:

Comparison of tropical cyclonegenesis indices on seasonal to

interannual timescales. Climate Dyn., 38, 301–321, https://

doi.org/10.1007/s00382-011-1126-x.

Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015:

Development of the GEOS-5 atmospheric general circulation

model: Evolution fromMERRA toMERRA2.Geosci. Model

Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015.

Moon, Y., and Coauthors, 2020: Wind and thermodynamic struc-

tures of tropical cyclones in global climate models and their

sensitivity to horizontal resolution. J. Climate, 33, 1575–1595,

https://doi.org/10.1175/JCLI-D-19-0172.1.

Murakami, H., and M. Sugi, 2010: Effect of model resolution on

tropical cyclone climate projections. SOLA, 6, 73–76, https://

doi.org/10.2151/SOLA.2010-019.

——, and B. Wang, 2010: Future change of North Atlantic tropical

cyclone tracks: Projection by a 20-km-mesh global atmo-

spheric model. J. Climate, 23, 2699–2721, https://doi.org/

10.1175/2010JCLI3338.1.

——, R. Mizuta, and E. Shindo, 2012a: Future changes in tropical

cyclone activity projected by multi-physics and multi-SST

ensemble experiments using the 60-km-mesh MRI-AGCM.

Climate Dyn., 39, 2569–2584, https://doi.org/10.1007/s00382-

011-1223-x.

——, and Coauthors, 2012b: Future changes in tropical cyclone

activity projected by the new high-resolution MRI-AGCM.

J. Climate, 25, 3237–3260, https://doi.org/10.1175/JCLI-D-11-

00415.1.

——, P.-C. Hsu, O. Arakawa, and T. Li, 2014: Influence of model

biases on projected future changes in tropical cyclone fre-

quency of occurrence. J. Climate, 27, 2159–2181, https://

doi.org/10.1175/JCLI-D-13-00436.1.

——, and Coauthors, 2015: Simulation and prediction of category 4

and 5 hurricanes in the high-resolution GFDL HiFLOR cou-

pled climate model. J. Climate, 28, 9058–9079, https://doi.org/

10.1175/JCLI-D-15-0216.1.

Nakamura, J., and Coauthors, 2017: Western North Pacific

tropical cyclone model tracks in present and future cli-

mates. J. Geophys. Res. Atmos., 122, 9721–9744, https://

doi.org/10.1002/2017JD027007.

Neale, R. B., and Coauthors, 2012: Description of the NCAR

Community Atmosphere Model (CAM 5.0). NCAR Tech.

Note NCAR/TN-4861STR, 274 pp., www.cesm.ucar.edu/

models/cesm1.0/cam/docs/description/cam5_desc.pdf.

Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical

cyclogenesis sensitivity to environmental parameters in radiative-

convective equilibrium.Quart. J. Roy. Meteor. Soc., 133, 2085–

2107, https://doi.org/10.1002/qj.170.

Palmén, E., 1948: On the formation and structure of tropical hur-

ricanes. Geophysica, 3, 26–38.

Pausata, F. S. R., and S. J. Camargo, 2019: Tropical cyclone activity

affected by volcanically induced ITCZ shifts. Proc. Natl.

Acad. Sci. USA, 116, 7732–7737, https://doi.org/10.1073/

pnas.1900777116.

Prabhat, O., Rubel, S. Byna, K. S. Wu, M. Wehner, andW. Bethel,

2012: TECA: A parallel toolkit for extreme climate analysis.

Procedia Comput. Sci., 9, 866–876, https://doi.org/10.1016/

j.procs.2012.04.093.

Putman,W., and S.-J. Lin, 2007: Finite-volume transport on various

cubed-sphere grids. J. Comput. Phys., 227, 55–78, https://

doi.org/10.1016/j.jcp.2007.07.022.

Ramsay, H. A., S. S. Chand, and S. J. Camargo, 2018: A statistical

assessment of Southern Hemisphere tropical cyclone tracks in

climate models. J. Climate, 31, 10 081–10 104, https://doi.org/

10.1175/JCLI-D-18-0377.1.

Rappin,E.D.,D. S.Nolan, andK.A.Emanuel, 2010: Thermodynamic

control of tropical cyclogenesis in environments of radiative-

convective equilibriumwith shear.Quart. J. Roy.Meteor. Soc.,

136, 1954–1971, https://doi.org/10.1002/qj.706.

Reed, K. A., and C. Jablonowski, 2011: Impact of physical pa-

rametrization on idealized tropical cyclones in theCommunity

Atmosphere Model. Geophys. Res. Lett., 38, L04805, https://

doi.org/10.1029/2010GL046297.

1 JUNE 2020 CAMARGO ET AL . 4485

https://doi.org/10.1175/JCLI-D-11-00447.1
https://doi.org/10.1175/JCLI-D-11-00447.1
https://doi.org/10.1175/JCLI-D-17-0269.1
https://doi.org/10.1175/JCLI-D-12-00539.1
https://doi.org/10.1007/s10584-009-9748-2
https://doi.org/10.1175/JCLI-D-16-0076.1
https://doi.org/10.1175/JCLI-D-16-0076.1
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1175/WAF-D-17-0165.1
https://doi.org/10.1175/WAF-D-17-0165.1
https://doi.org/10.1002/2017MS001199
https://doi.org/10.1175/BAMS-D-18-0042.1
https://doi.org/10.1175/1520-0469(1970)027<0580:TCIATI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1970)027<0580:TCIATI>2.0.CO;2
https://doi.org/10.1175/JCLI-D-11-00346.1
https://doi.org/10.1175/JCLI-D-11-00346.1
https://doi.org/10.1175/JCLI-D-13-00678.1
https://doi.org/10.1175/JCLI-D-15-0531.1
https://doi.org/10.1175/JCLI-D-15-0531.1
https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2
https://doi.org/10.1007/s00382-011-1126-x
https://doi.org/10.1007/s00382-011-1126-x
https://doi.org/10.5194/gmd-8-1339-2015
https://doi.org/10.1175/JCLI-D-19-0172.1
https://doi.org/10.2151/SOLA.2010-019
https://doi.org/10.2151/SOLA.2010-019
https://doi.org/10.1175/2010JCLI3338.1
https://doi.org/10.1175/2010JCLI3338.1
https://doi.org/10.1007/s00382-011-1223-x
https://doi.org/10.1007/s00382-011-1223-x
https://doi.org/10.1175/JCLI-D-11-00415.1
https://doi.org/10.1175/JCLI-D-11-00415.1
https://doi.org/10.1175/JCLI-D-13-00436.1
https://doi.org/10.1175/JCLI-D-13-00436.1
https://doi.org/10.1175/JCLI-D-15-0216.1
https://doi.org/10.1175/JCLI-D-15-0216.1
https://doi.org/10.1002/2017JD027007
https://doi.org/10.1002/2017JD027007
http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf
http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf
https://doi.org/10.1002/qj.170
https://doi.org/10.1073/pnas.1900777116
https://doi.org/10.1073/pnas.1900777116
https://doi.org/10.1016/j.procs.2012.04.093
https://doi.org/10.1016/j.procs.2012.04.093
https://doi.org/10.1016/j.jcp.2007.07.022
https://doi.org/10.1016/j.jcp.2007.07.022
https://doi.org/10.1175/JCLI-D-18-0377.1
https://doi.org/10.1175/JCLI-D-18-0377.1
https://doi.org/10.1002/qj.706
https://doi.org/10.1029/2010GL046297
https://doi.org/10.1029/2010GL046297


——, J. T. Bacmeister, N. A. Rosenblum, M. F. Wehner, S. C.

Bates, P. H. Lauritzen, J. E. Truesdale, and C. Hannay, 2015:

Impact of the dynamical core on the direct simulation

of tropical cyclones in a high-resolution global model.

Geophys. Res. Lett., 42, 3603–3608, https://doi.org/10.1002/

2015GL063974.

Rienecker, M. M., and Coauthors, 2008: The GEOS-5 data as-

similation system—Documentation of versions 5.0.1, 5.1.0,

and 5.2.0. Tech. Rep. series on Global Modeling and Data

Assimilation, 27, NASA/TM–2008–104606, 101 pp.

Roberts, M. J., and Coauthors, 2015: Tropical cyclones in the

UPSCALE ensemble of high-resolution global climate

models. J. Climate, 28, 574–596, https://doi.org/10.1175/

JCLI-D-14-00131.1.

——, and Coauthors, 2018: The benefits of global high resolution

for climate simulation: Process understanding and the en-

abling of stakeholder decisions at the regional scale. Bull.

Amer. Meteor. Soc., 99, 2341–2359, https://doi.org/10.1175/

BAMS-D-15-00320.1.

Roeckner, E., and Coauthors, 2003: The atmospheric general cir-

culation model ECHAM5. Part I: Model description. Tech.

Rep. 349, Max-Planck Institute for Meteorology, Hamburg,

Germany, 127 pp.

Rotstayn, L. D., S. J. Jeffrey, M. A. Collier, S. M. Dravitzki, A. C.

Hirst, J. I. Syktus, and K. K. Wong, 2012: Aerosol- and

greenhouse gas-induced changes in summer rainfall and

circulation in the Australasian region: A study using single-

forcing climate simulations. Atmos. Chem. Phys., 12, 6377–

6404, https://doi.org/10.5194/acp-12-6377-2012.

Saha, S., and Coauthors, 2014: TheNCEPClimate Forecast System

version 2. J. Climate, 27, 2185–2208, https://doi.org/10.1175/

JCLI-D-12-00823.1.

Schmidt, G. A., and Coauthors, 2014: Configuration and assess-

ment of GISS ModelE2 contributions to the CMIP5 archive.

J. Adv. Model. Earth Syst., 6, 141–184, https://doi.org/10.1002/

2013MS000265.

Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones

on ocean heat transport in a high-resolution coupled general

circulation model. J. Climate, 24, 4368–4384, https://doi.org/

10.1175/2011JCLI4104.1.

——, S. Gualdi, G. Villarini, G. A. Vecchi, M. Zhao, K.Walsh, and

A. Navarra, 2014: Increased precipitation events associated

with landfalling tropical cyclones in response to a warmer

climate and increased CO2. J. Climate, 27, 4642–4654, https://

doi.org/10.1175/JCLI-D-14-00065.1.

——, P. G. Fogli, K. A. Reed, S. Gualdi, S.Masina, andA.Navarra,

2017: Tropical cyclone interaction with the ocean: The role of

high-frequency (subdaily) coupled processes. J. Climate, 30,

145–162, https://doi.org/10.1175/JCLI-D-16-0292.1.

Shaevitz, D. A., and Coauthors, 2014: Characteristics of tropical

cyclones in high-resolution models of the present climate.

J. Adv. Model. Earth Syst., 6, 1154–1172, https://doi.org/

10.1002/2014MS000372.

Sobel, A. H., and S. J. Camargo, 2005: Influence of western North

Pacific tropical cyclones on their environment. J. Atmos. Sci.,

62, 3396–3407, https://doi.org/10.1175/JAS3539.1.

Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E.

Demory, 2013: Investigating global tropical cyclone activitywith a

hierarchy ofAGCMs: The role ofmodel resolution. J. Climate, 26,

133–152, https://doi.org/10.1175/JCLI-D-12-00012.1.

Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint

on tropical cyclone intensity. J. Atmos. Sci., 67, 1817–1830,

https://doi.org/10.1175/2010JAS3318.1.

——, and ——, 2012a: Sensitivity of tropical cyclone intensity to

ventilation in an axisymmetric model. J. Atmos. Sci., 69, 2394–

2413, https://doi.org/10.1175/JAS-D-11-0232.1.

——, and ——, 2012b: A ventilation index for tropical cyclones.

Bull. Amer. Meteor. Soc., 93, 1901–1912, https://doi.org/

10.1175/BAMS-D-11-00165.1.

——, and S. J. Camargo, 2014: Environmental control of tropical

cyclones in CMIP5: A ventilation perspective. J. Adv. Model.

Earth Syst., 6, 115–128, https://doi.org/10.1002/2013MS000294.

Taylor, K. E., R. J. Stouffer, andG.A.Meehl, 2012:An overview of

CMIP5 and the experiment design. Bull. Amer. Meteor. Soc.,

93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1.

Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson

regression index for tropical cyclone genesis and the role of

large-scale vorticity in genesis. J. Climate, 24, 2335–2357,

https://doi.org/10.1175/2010JCLI3811.1.

Tory, K. J., S. S. Chand, J. L.McBride,H. Ye, andR.A.Dare, 2013:

Projected changes in late-twenty-first-century tropical cyclone

frequency in 13 coupled climate models from phase 5 of the

CoupledModel Intercomparison Project. J. Climate, 26, 9946–

9959, https://doi.org/10.1175/JCLI-D-13-00010.1.

Ullrich, P. A., and C. M. Zarzycki, 2017: TempestExtremes: A

framework for scale-insensitive pointwise feature tracking on

unstructured grids.Geosci. Model Dev., 10, 1069–1090, https://

doi.org/10.5194/gmd-10-1069-2017.

Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of

regional tropical cyclone activity. J. Climate, 27, 7994–8016,

https://doi.org/10.1175/JCLI-D-14-00158.1.

——, and Coauthors, 2019: The response of tropical-cyclone per-

mitting coupled global climate models to CO2 doubling: Large-

scale surface climate and tropical cyclone activity.ClimateDyn.,

53, 5999–6033, https://doi.org/10.1007/s00382-019-04913-y.

Villarini, G., D. A. Lavers, E. Scoccimarro, M. Zhao, M. F. Wehner,

G. A. Vecchi, T. R. Knutson, and K. A. Reed, 2014: Sensitivity of

tropical cyclone rainfall to idealizedglobal scale forcings. J.Climate,

27, 4622–4641, https://doi.org/10.1175/JCLI-D-13-00780.1.

Vitart, F., 2009: Impact of the Madden Julian Oscillation on

tropical storms and risk of landfall in the ECMWF forecast

system. Geophys. Res. Lett., 36, L15802, https://doi.org/

10.1029/2009GL039089.

——, J. L. Anderson, J. Sirutis, and R. E. Tuleya, 2001: Sensitivity

of tropical storms simulated by a general circulation model to

changes in cumulus parametrization. Quart. J. Roy. Meteor.

Soc., 127, 25–51, https://doi.org/10.1002/qj.49712757103.

——,D. Anderson, and T. Stockdale, 2003: Seasonal forecasting of

tropical cyclone landfall over Mozambique. J. Climate, 16,

3932–3945, https://doi.org/10.1175/1520-0442(2003)016,3932:

SFOTCL.2.0.CO;2.

Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global cli-

mate model: Description and basic evaluation. Climate Dyn.,

40, 2091–2121, https://doi.org/10.1007/s00382-011-1259-y.

Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating

present-day climate with INMCM4.0 coupled model of the at-

mospheric and oceanic general circulations. Izv. Atmos. Ocean

Phys., 46, 414–431, https://doi.org/10.1134/S000143381004002X.
von Salzen, K., and Coauthors, 2013: The Canadian fourth gener-

ation atmospheric global climate model (CanAM4). Part I:

Representation of physical processes.Atmos. -Ocean, 51, 104–

125, https://doi.org/10.1080/07055900.2012.755610.

Walsh, K., S. Lavender, E. Scoccimarro, and H. Murakami, 2013:

Resolution dependence of tropical cyclone formation in

CMIP3 and finer resolution models. Climate Dyn., 40, 585–

599, https://doi.org/10.1007/s00382-012-1298-z.

4486 JOURNAL OF CL IMATE VOLUME 33

https://doi.org/10.1002/2015GL063974
https://doi.org/10.1002/2015GL063974
https://doi.org/10.1175/JCLI-D-14-00131.1
https://doi.org/10.1175/JCLI-D-14-00131.1
https://doi.org/10.1175/BAMS-D-15-00320.1
https://doi.org/10.1175/BAMS-D-15-00320.1
https://doi.org/10.5194/acp-12-6377-2012
https://doi.org/10.1175/JCLI-D-12-00823.1
https://doi.org/10.1175/JCLI-D-12-00823.1
https://doi.org/10.1002/2013MS000265
https://doi.org/10.1002/2013MS000265
https://doi.org/10.1175/2011JCLI4104.1
https://doi.org/10.1175/2011JCLI4104.1
https://doi.org/10.1175/JCLI-D-14-00065.1
https://doi.org/10.1175/JCLI-D-14-00065.1
https://doi.org/10.1175/JCLI-D-16-0292.1
https://doi.org/10.1002/2014MS000372
https://doi.org/10.1002/2014MS000372
https://doi.org/10.1175/JAS3539.1
https://doi.org/10.1175/JCLI-D-12-00012.1
https://doi.org/10.1175/2010JAS3318.1
https://doi.org/10.1175/JAS-D-11-0232.1
https://doi.org/10.1175/BAMS-D-11-00165.1
https://doi.org/10.1175/BAMS-D-11-00165.1
https://doi.org/10.1002/2013MS000294
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/2010JCLI3811.1
https://doi.org/10.1175/JCLI-D-13-00010.1
https://doi.org/10.5194/gmd-10-1069-2017
https://doi.org/10.5194/gmd-10-1069-2017
https://doi.org/10.1175/JCLI-D-14-00158.1
https://doi.org/10.1007/s00382-019-04913-y
https://doi.org/10.1175/JCLI-D-13-00780.1
https://doi.org/10.1029/2009GL039089
https://doi.org/10.1029/2009GL039089
https://doi.org/10.1002/qj.49712757103
https://doi.org/10.1175/1520-0442(2003)016<3932:SFOTCL>2.0.CO;2
https://doi.org/10.1175/1520-0442(2003)016<3932:SFOTCL>2.0.CO;2
https://doi.org/10.1007/s00382-011-1259-y
https://doi.org/10.1134/S000143381004002X
https://doi.org/10.1080/07055900.2012.755610
https://doi.org/10.1007/s00382-012-1298-z


——, M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007:

Objectively determined resolution-dependent threshold cri-

teria for the detection of tropical cyclones in climate models

and reanalyses. J. Climate, 20, 2307–2314, https://doi.org/

10.1175/JCLI4074.1.

——, and Coauthors, 2015: Hurricanes and climate: The U.S.

CLIVAR working group on hurricanes. Bull. Amer. Meteor.

Soc., 96, 997–1017, https://doi.org/10.1175/BAMS-D-13-

00242.1.

Wang,H., andCoauthors, 2014:Howwell do global climatemodels

simulate the variability of Atlantic tropical cyclones associ-

ated with ENSO? J. Climate, 27, 5673–5692, https://doi.org/
10.1175/JCLI-D-13-00625.1.

Watanabe, M., and Coauthors, 2010: Improved climate simulation

by MIROC5: Mean states, variability, and climate sensitivity.

J. Climate, 23, 6312–6335, https://doi.org/10.1175/2010JCLI3679.1.

Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model

description and basic results of CMIP5-20c3m experiments.

Geosci.ModelDev., 4, 845–872, https://doi.org/10.5194/gmd-4-

845-2011.

Wehner, M., Prabhat, K.A. Reed, D. Stone, W.D. Collins, and

J. Bacmeister, 2015: Resolution dependence of future tropical

cyclone projections of CAM5.1 in the U.S. CLIVAR hurri-

cane working group idealized configurations. J. Climate, 28,

3905–3925, https://doi.org/10.1175/JCLI-D-14-00311.1.

——, and Coauthors, 2014: The effect of horizontal resolution on

simulation quality in the Community Atmospheric Model,

CAM5.1. J. Adv. Model. Earth Syst., 6, 980–997, https://doi.org/

10.1002/2013MS000276.

Wing,A. A., A.H. Sobel, and S. J. Camargo, 2007: The relationship

between the potential and actual intensities of tropical

cyclones. Geophys. Res. Lett., 34, L08810, https://doi.org/

10.1029/2006GL028581.

——, and Coauthors, 2019: Moist static energy budget analysis of

tropical cyclone intensification in high-resolution climate

models. J. Climate, 32, 6071–6095, https://doi.org/10.1175/

JCLI-D-18-0599.1.

Yukimoto, S., and Coauthors, 2012: A new global climate model of

the Meteorological Research Institute: MRI-CGCM3—Model

description and basic performance. J. Meteor. Soc. Japan, 90A,

23–64, https://doi.org/10.2151/jmsj.2012-A02.

Zanchettin, D., A. Rubino, D. Matei, O. Bothe, and J. H.

Jungclaus, 2013: Multidecadal-to-centennial SST variability in

the MPI-ESM simulation ensemble for the last millennium.

Climate Dyn., 40, 1301–1318, https://doi.org/10.1007/s00382-
012-1361-9.

Zarzycki, C. M., 2016: Tropical cyclone intensity errors associated

with lack of two-way ocean coupling in high-resolution global

simulations. J. Climate, 29, 8589–8610, https://doi.org/10.1175/
JCLI-D-16-0273.1.

——, and P. A. Ullrich, 2017: Assessing sensitivities in algo-

rithmic detection of tropical cyclones in climate data.

Geophys. Res. Lett., 44, 1141–1149, https://doi.org/10.1002/

2016GL071606.

——, C. Jablonowski, and M. A. Taylor, 2014: Using variable-

resolution meshes to model tropical cyclones in the Community

Atmosphere Model. Mon. Wea. Rev., 142, 1221–1239, https://

doi.org/10.1175/MWR-D-13-00179.1.

——, D. R. Thatcher, and C. Jablonowski, 2017: Objective tropical

cyclone extratropical transition detection in high-resolution

reanalysis and climate model data. J. Adv. Model. Earth Syst.,

9, 130–148, https://doi.org/10.1002/2016MS000775.

Zhang, G., H. Murakami, R. Gudgel, and X. Yang, 2019:

Dynamical seasonal prediction of tropical cyclone activity:

Robust assessment of prediction skill and predictability.

Geophys. Res. Lett., 46, 5506–5515, https://doi.org/10.1029/

2019GL082529.

Zhang, W., G. Villarini, G. A. Vecchi, and H. Murakami, 2019:

Rainfall from tropical cyclones: High-resolution simulations

and seasonal forecasts. Climate Dyn., 52, 5269–5289, https://

doi.org/10.1007/s00382-018-4446-2.

Zhang, Z. S., and Coauthors, 2012: Pre-industrial andmid-Pliocene

simulations with NorESM-L. Geosci. Model Dev., 5, 523–533,
https://doi.org/10.5194/gmd-5-523-2012.

Zhao, C., H.-L. Ren, R. Eade, Y. Wu, J. Wu, and C. MacLachlan,

2019: MJO modulation and its ability to predict boreal sum-

mer tropical cyclone genesis over the northwest Pacific in Met

Office Hadley Centre and Beijing Climate Center seasonal

prediction systems. Quart. J. Roy. Meteor. Soc., 145, 1089–

1101, https://doi.org/10.1002/qj.3478.

Zhao,M., and I.M.Held, 2012: TC-permittingGCM simulations of

hurricane frequency response to sea surface temperature anom-

alies projected for the late-twenty-first century. J. Climate, 25,

2995–3009, https://doi.org/10.1175/JCLI-D-11-00313.1.

——,——, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global

hurricane climatology, interannual variability and response to

global warming using a 50-km resolution GCM. J. Climate, 22,
6653–6678, https://doi.org/10.1175/2009JCLI3049.1.

——, ——, and ——, 2012: Some counterintuitive dependencies

of tropical cyclone frequency on parameters in a GCM.

J. Atmos. Sci., 69, 2272–2283, https://doi.org/10.1175/JAS-

D-11-0238.1.

——, and Coauthors, 2018a: The GFDL global atmosphere and

land model AM4.0/LM4.0: 1. Simulation characteristics with

prescribed SSTs. J. Adv. Model. Earth Syst., 10, 691–734,

https://doi.org/10.1002/2017MS001208.

——, and Coauthors, 2018b: The GFDL global atmosphere and

land model AM4.0/LM4.0: 2. Model description, sensitivity

studies, and tuning strategies. J. Adv. Model. Earth Syst., 10,
735–769, https://doi.org/10.1002/2017MS001209.

1 JUNE 2020 CAMARGO ET AL . 4487

https://doi.org/10.1175/JCLI4074.1
https://doi.org/10.1175/JCLI4074.1
https://doi.org/10.1175/BAMS-D-13-00242.1
https://doi.org/10.1175/BAMS-D-13-00242.1
https://doi.org/10.1175/JCLI-D-13-00625.1
https://doi.org/10.1175/JCLI-D-13-00625.1
https://doi.org/10.1175/2010JCLI3679.1
https://doi.org/10.5194/gmd-4-845-2011
https://doi.org/10.5194/gmd-4-845-2011
https://doi.org/10.1175/JCLI-D-14-00311.1
https://doi.org/10.1002/2013MS000276
https://doi.org/10.1002/2013MS000276
https://doi.org/10.1029/2006GL028581
https://doi.org/10.1029/2006GL028581
https://doi.org/10.1175/JCLI-D-18-0599.1
https://doi.org/10.1175/JCLI-D-18-0599.1
https://doi.org/10.2151/jmsj.2012-A02
https://doi.org/10.1007/s00382-012-1361-9
https://doi.org/10.1007/s00382-012-1361-9
https://doi.org/10.1175/JCLI-D-16-0273.1
https://doi.org/10.1175/JCLI-D-16-0273.1
https://doi.org/10.1002/2016GL071606
https://doi.org/10.1002/2016GL071606
https://doi.org/10.1175/MWR-D-13-00179.1
https://doi.org/10.1175/MWR-D-13-00179.1
https://doi.org/10.1002/2016MS000775
https://doi.org/10.1029/2019GL082529
https://doi.org/10.1029/2019GL082529
https://doi.org/10.1007/s00382-018-4446-2
https://doi.org/10.1007/s00382-018-4446-2
https://doi.org/10.5194/gmd-5-523-2012
https://doi.org/10.1002/qj.3478
https://doi.org/10.1175/JCLI-D-11-00313.1
https://doi.org/10.1175/2009JCLI3049.1
https://doi.org/10.1175/JAS-D-11-0238.1
https://doi.org/10.1175/JAS-D-11-0238.1
https://doi.org/10.1002/2017MS001208
https://doi.org/10.1002/2017MS001209

