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Recent increases in tropical cyclone intensification
rates
Kieran T. Bhatia1,2, Gabriel A. Vecchi 2,3, Thomas R. Knutson 1, Hiroyuki Murakami1,4, James Kossin5,

Keith W. Dixon1 & Carolyn E. Whitlock1,6

Tropical cyclones that rapidly intensify are typically associated with the highest forecast

errors and cause a disproportionate amount of human and financial losses. Therefore, it is

crucial to understand if, and why, there are observed upward trends in tropical cyclone

intensification rates. Here, we utilize two observational datasets to calculate 24-hour wind

speed changes over the period 1982–2009. We compare the observed trends to natural

variability in bias-corrected, high-resolution, global coupled model experiments that accu-

rately simulate the climatological distribution of tropical cyclone intensification. Both

observed datasets show significant increases in tropical cyclone intensification rates in the

Atlantic basin that are highly unusual compared to model-based estimates of internal climate

variations. Our results suggest a detectable increase of Atlantic intensification rates with a

positive contribution from anthropogenic forcing and reveal a need for more reliable data

before detecting a robust trend at the global scale.
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Society is faced with significant challenges when tropical
cyclones (TCs) rapidly intensify. These storms quickly rise
through the Saffir–Simpson intensity scale1,2, occasionally

jumping from a category 1 (64–82 knots) to category 5 (>137
knots) hurricane within a couple of days. Storms that undergo
rapid intensification (RI; defined as the 95th percentile of 24-h
intensity changes3) reach major hurricane status (wind speeds
greater than 95 knots, categories 3–5 on the Saffir–Simpson Scale)
about 80% of the time4 and are associated with the highest
forecast errors. As a result, RI can lead to disastrous scenarios
when coastal areas are not given adequate notice to evacuate and
prepare for an extremely intense TC (e.g., Hurricane Audrey,
1957)5.

The destruction and forecast error associated with TCs that
undergo RI has inspired new research on whether RI frequency
will be altered due to climate change. A recent statistical-
dynamical downscaling study found that the number of TCs that
undergo RI before U.S. landfall is projected to significantly
increase in the late 21st century compared to the late 20th cen-
tury5. A separate study involving climate change simulations
produced by a high-resolution global climate model (GCM)
projected a dramatic increase in the global incidence of RI due to
global warming6. The agreement in these two studies with dif-
ferent methodologies as well as the theoretical backing by a third
study7 suggests we should investigate whether climate change has
already increased the probability of TCs rapidly intensifying. An
anthropogenically forced signal in recent observational data
would provide evidence that these model projections are well-
grounded and therefore, substantial coastal mitigation and
adaptation strategies would be required in the near future.

Although TC frequency has stayed approximately constant
over recent decades, there is growing evidence that the proportion
of TCs which become major hurricanes has significantly
increased8–13. Therefore, intensification metrics that capture the
relative, rather than the absolute, frequency of the highest
intensification rates are useful for understanding whether the
probability of RI events is increasing. For example, a recent study
showed the 95th percentile of 24-h intensity changes significantly
increased in the central and eastern tropical Atlantic basin during
the period of 1986–201514. Another intensification metric that is
not dependent on TC frequency, the intensification rate of
intensifying storms, exhibited significant growth between 1977
and 2013 in the West Pacific basin15. In both basins, the studies
showed the large-scale environment becoming more conducive to
TC intensification with time. Specifically, areas with the largest
increase in sea surface temperatures (SSTs) and potential inten-
sities16 appear to be collocated with the largest positive changes in
intensification rates.

Here, we build on these results by evaluating Atlantic and
global TC intensification trends using different metrics and
additional observational datasets. We focus primarily on the
Atlantic basin because it is the basin with the most consistent
high-quality observations. There are currently no published
findings on global trends in TC intensity changes, so these results
are also included to provide a more comprehensive perspective.
To separate anthropogenic trends and normal climate fluctua-
tions, we use a state-of-the-art coupled GCM, the high-resolution
forecast-oriented low ocean resolution model (HiFLOR). Speci-
fically, we simulate the year-to-year variations in TC intensifi-
cation from a suite of HiFLOR multicentury experiments that
serve as a proxy for natural climate variability and compare the
magnitude of the trends in the simulated climate to those in
observations . The recent increase in high-intensification rates in
the Atlantic basin is outside the range of normal climate varia-
bility defined by HiFLOR, which suggests anthropogenic forcing
increases the likelihood of TCs rapidly intensifying.

Results
Observational trends. Thus far, TC intensification trend analysis
has exclusively focused on International Best-Track Archive for
Climate Stewardship17 (IBTrACS) data (Methods), which likely
adds systematic biases to published results. IBTrACS is composed
of TC best-track data from different operational agencies whose
TC intensity observations became more reliable when global
satellite coverage was introduced in the early 1980s (except for the
Indian Ocean which did not gain continuous satellite coverage
until 1998)18. Over much of the globe, satellite data quality has
improved through increasing resolution and decreasing view
angles, which enhances the accuracy of the most recent intensity
estimates. The recent addition of more in situ measurements in
the Atlantic and the East Pacific leads to lower errors in these
basins, which results in additional spatial and temporal inho-
mogeneities in the observations19.

In order to gauge the impact of these inhomogeneities on TC
intensification trends, we first compare the probability of 24-h
wind speed changes in IBTrACS and a more homogeneous record
of TC intensity, the Advanced Dvorak Technique-Hurricane
Satellite-B1 (ADT-HURSAT)12 (Methods). Kossin et al.12 devel-
oped ADT-HURSAT in order to maintain the same protocol to
determine TC intensities throughout all ocean basins during the
period 1982–2009. ADT-HURSAT incorporates artificially
degraded intensity estimates in certain regions so its data quality
is consistent both spatially and temporally, which is better suited
for trend analysis. However, this increased data consistency
means the best technology and analysis techniques are not
utilized in ADT-HURSAT, which leads to individual intensity
estimates with higher average errors than those in IBTrACS12,20.
However, for the scope of our study, which involves assessing
rates of change throughout a time series, temporal consistency is
preferable to accuracy in individual estimates.

Figure 1 shows the empirical probability density plots
calculated from ADT-HURSAT and IBTrACS 24-h intensity
changes, using a logarithm transformation on the probabilities to
better illustrate differences in the tails of the distributions.
Supplementary Figure 1 shows the more traditional probability
density plots. For all of our analyses, we impose criteria involving
storm longevity, location, and intensity to ensure only intensity
changes derived from well-defined storms are included in our
results (Methods). For the global results, we entirely exclude the
north and south Indian Oceans from the sample because of the
well-known absence of quality satellite data in the region until
199812. Nevertheless, our conclusions do not significantly change
when these basins are introduced into the analysis.

As expected, the differences in the ADT-HURSAT and
IBTrACS intensity change distributions are larger for the global
data, while the two datasets show more agreement in the Atlantic
basin. For the global results, TCs in ADT-HURSAT maintain
their intensity for a larger percentage of cases than in IBTrACS
but also have significantly more instances of intensification rates
between 50 and 90 knots (resulting in a “shelf” in this part of the
distribution). IBTrACS curves appear almost linear in both plots
which imply that probability densities are exponentially dis-
tributed. Thus, IBTrACS suggests that TC intensification and
dissipation are likely controlled by statistically random environ-
mental and internal processes21. Meanwhile, ADT-HURSAT’s
shelf-like pattern suggests that RI is a special process that could
preferentially augment the probability of the highest intensifica-
tion rates. The former interpretation is much more likely
considering the ADT-HURSAT algorithm exhibits well-
documented problems during TC eye formation (Methods).

As discussed in Bhatia et al.6, the discrepancies among basins
and datasets cannot be attributed to specific physical processes or
data deficiencies. A summary of the potential explanations for
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this behavior are included in the Methods section. We here argue
that the agreement among the observational datasets in the
Atlantic basin provides some level of confidence in the trend
analysis in this basin. On the other hand, both observational
datasets have larger uncertainties in global intensity changes.
Therefore, any conclusions stemming from the global trend
analysis must be treated with caution.

Figure 2 shows Atlantic basin and global trends in 24-h
intensity changes between 1982 and 2009. The 28-year period is
selected for analysis because it is the longest continuous sample
where ADT-HURSAT produces relatively reliable global intensity
data. Quantile regression is calculated for every 5% quantile
between 5% and 95% (Methods). IBTrACS shows significant
trends in all quantiles except the ones between 35% and 45%.
The 95th percentile shows the largest trend of about +4 knots
decade−1. The negative slopes for the lower percentiles and
positive slopes for the upper quantiles suggests a broadening of
the intensity change distribution, implying less TCs maintaining a
steady intensity and more TCs exhibiting high-intensity fluctua-
tions. ADT-HURSAT shares a similar pattern for the slopes of the

quantiles but the trends are more muted. Despite being relatively
small in magnitude, ADT-HURSAT quantile slopes greater than
the 50% quantile are statistically significant and positive, with the
90th percentile having the largest slope of approximately 1 knot
decade−1.

For the global data, ADT-HURSAT trends are clearly much
smaller than those in IBTrACS, yet IBTrACS trends are likely
more susceptible to data homogeneity problems. Therefore, it is
our interpretation that the weaker global trends shown by ADT-
HURSAT are more likely to be correct. This conclusion is
particularly notable because multiple studies4,13–15 have assumed
that IBTrACS is reliable during the time frame considered in our
study when in reality, there is likely a spurious trend masked by
the data. It is possible that resolution and algorithm issues with
ADT-HURSAT prevent it from resolving the intensity changes
and have slightly dampened largest trends. However, it is much
more likely that the influx of new satellites has enabled better
detection of intensity changes in the later years of the time series
and thus, artificially enhanced the slope of the extreme quantiles
in IBTrACS.

In the Atlantic basin, the quantile regression for ADT-
HURSAT and IBTrACS yields similar results for extreme
intensity changes. For both observational datasets, the 95th
percentile shows the largest trend. This quantile increases by over
+4 knots decade−1 in ADT-HURSAT and +3 knots decade−1 in
IBTrACS. The upward trend in TC activity during the 1990s is
typically attributed to the Atlantic Multidecadal Oscillation
(AMO), which features multidecadal fluctuations in SSTs in the
Atlantic basin22. In the late 1990s, the phase of the AMO shifted
from negative to positive which coincides with warming in parts
of the Atlantic basin where TCs develop14. Therefore, the AMO
phase favored RI at the end of the time series. In addition to the
AMO behavior, the reliability of the observational data in the
Atlantic basin suggests the positive trend in intensification rates
during 1982–2009 is likely robust. IBTrACS has its lowest errors
in the Atlantic basin because of the plentiful in situ observations
that are incorporated into the best-track analysis. ADT-HURSAT
relies on best-track positions to accurately assign a scene type and
find an eye, which suggests that the additional reconnaissance in
this basin could also help with ADT-HURSAT’s intensity
estimates.

As a complement to quantile regression, we also analyze how
the annual rapid intensification ratio (RI ratio) has changed from
1982 to 2009. RI ratio is defined as the number of 24-h intensity
changes greater than 30 knots divided by the total number of
intensity changes6, and it reflects changes in the probability of the
highest TC intensification rates. Figure 3 illustrates the Atlantic
basin and global trends in RI ratio for ADT-HURSAT and
IBTrACS. For both observational datasets, slopes are positive and
significant in the global and Atlantic basin data. Much like Fig. 2,
the Atlantic basin trends for the observational datasets are very
similar. Over the 28-year period, the percentage of 24-h intensity
changes that exceed an intensification rate of 30 knots
approximately triples in IBTrACS and ADT-HURSAT. IBTrACS
shows a similar rise in RI ratio for the global data but ADT-
HURSAT has a much smaller slope.

Supplementary Figure 2 shows the annual RI ratio of the two
observational datasets plotted against each other. In the Atlantic
basin, 35.7% of the variance in IBTrACS RI ratio is explained by
ADT-HURSAT RI ratio. For the global data, the percentage
explained drops to 1.8%, further highlighting the lack of
agreement between the two observational datasets at global
scales. The variations in the slope of RI ratio among the global
observations as well as the lack of a published theory23 that
explains the source of a significant positive slope in global TC
intensification metrics highlight the uncertainty in the global
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Fig. 1 Observed 24-intensity change probability densities. a, b Common
logarithm of the probability densities calculated from IBTrACS (black) and
ADT-HURSAT (blue) 24-h intensity changes. a Global and b Atlantic basin
results for the period 1982–2009 are plotted. Data are binned in 20 knot
increments between −110 and 110 knots. The dashed lines indicate the
90% confidence interval (between 5th and 95th percentiles of the data)
(Methods). All distributions are bounded below by 10−5
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results. Conversely, the recent uptick in intense TCs and RI
magnitude in the Atlantic basin appears more plausible because
of the AMO shifting phase.

Ordinary trend analysis over a relatively short period
(1982–2009) may mistake multidecadal natural variability for a
long-term trend. For a more refined estimate of the possible
influence of natural variability on observed trends and to
quantitatively assess whether the recent increase in Atlantic RI
ratio can be explained by natural variability alone, we compared
the observed trends to those in a TC-permitting GCM that can
simulate multidecadal climate variability in the Atlantic basin.
Global results are also presented with the caveat that the ADT-
HURSAT data are likely more realistic because of the homo-
geneous time series.

Climate model simulations. HiFLOR is a high-resolution cou-
pled GCM that can recover many aspects of the highest TC
intensification rates observed in nature and capture the connec-
tion between low-frequency climate oscillations and TC
behavior6,24–26. A recent study24 showed that HiFLOR, when
nudged toward observed SSTs, can skillfully reproduce the
observed year-by-year variations of the frequency of Category 4
and 5 hurricanes (maximum wind speed ≥ 113 kts) in the Atlantic
basin (r ≈ 0.64) and other basins to a lesser extent. HiFLOR’s
seasonal predictions of major hurricanes were also skillful in the
Atlantic basin, and the high positive correlations between
HiFLOR predictions and observations are still among the highest
documented for a dynamical climate model25. The confirmed
presence of important modes of internal climate variability within

HiFLOR as well as the resolved relationship between TCs and the
large-scale climate instills some confidence that HiFLOR can
diagnose whether observed changes are unusual compared to
expected natural variability.

For an initial exploration of whether anthropogenic climate
may be contributing to the increase in TC intensification, we
follow the methodology of Murakami et al.27 and examine TC
variations from a suite of HiFLOR multicentury experiments with
different levels of anthropogenic forcing. Four HiFLOR experi-
ments are run using anthropogenic forcing (e.g., CO2, aerosols,
and ozone) and natural forcing (e.g., volcanic aerosol loading and
solar insolation) representative of the years 1860, 1940, 1990, and
2015 (1860CTL, 1940CTL, 1990CTL, and 2015CTL; Methods).

To compare the control simulations to observations, Supple-
mentary Figure 3 shows the logarithm of the 24-h intensity
change probabilities observed between 1982 and 1998 in
IBTrACS and ADT-HURSAT and those simulated in the
1990CTL. As a technique to account for the typical error
associated with measuring TC intensity, the probability of each
bin was calculated using 1000 subsamples that incorporated
random error (Methods). To verify the quality of the control
simulations, the 17-year period between 1982 and 1998 was
selected for analysis because it is the longest available period with
observational data that is centered on a control simulation. The
1990CTL data matches the shape of the IBTrACS curve but the
distribution is not as broad as either of the observational datasets,
indicating that HiFLOR underestimates the frequency of rapid
weakening and intensification. A discrepancy in the probability of
the highest intensity changes was also documented by Bhatia
et al.6 but the differences appear larger in Supplementary Figure 3,
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Fig. 2 Quantile regression of 24-h intensity changes. a–d Slope of the quantiles for 24-h intensity changes during the period 1982–2009. Slopes are shown
for IBTrACS (a, c) and ADT-HURSAT (b, d) globally (a, b) and in the Atlantic basin (c, d). The black dots represent the slope derived from least squares
regression of intensity change as a function of year for each quantile from 0.05 to 0.95 in steps of 0.05. Shading represents the 5th and 95th percentiles of
the regressions with randomly perturbed observational data (Methods). The red solid line shows the (constant value) trend in the mean as measured by
ordinary least squares regression, and the red dotted lines show the 90% confidence interval
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possibly due to the lack of SST nudging or the different years
sampled.

HiFLOR underestimates the climatological rates of intensifica-
tion, which will impact estimates of the amplitude of internal
variability from this model. In order to mitigate the effects of
systematic biases in HiFLOR intensity changes on estimating the
internal variability of intensification rates, we utilize a statistical
downscaling technique known as quantile mapping28. Specifi-
cally, we test two methods: quantile delta mapping29 (QDM) and
bias correction quantile mapping30 (BCQM) (Methods). All
subsequent analysis only incorporates the QDM algorithm
because it is more adept at preserving relative changes in
distributions of meteorological variables from different climate
change simulations29. Figure 4 shows the effects of both quantile
mapping algorithms. In this case, random error is not included in

the probability estimates because we aim to nudge HiFLOR to the
best guess of the intensity distribution. Clearly, the bias
corrections are aligning the tails of the 1990CTL more closely
with the tails of the observations. When we explore the potential
influence of anthropogenic forcing on TC intensification rates, it
is critical that HiFLOR provides a realistic picture of natural
climate variability. Bias-corrections increase the probability of
extreme intensity changes in the HiFLOR control simulations,
which broadens the intensity change distribution. Thus, the bias-
corrections enhance the annual variations in RI ratio and the
range of the RI ratio slopes in the HiFLOR simulations, which
translates into more stringent statistical tests for establishing
significant observational trends.

To test for observed RI trends that are outside of natural,
internal climate variability, overlapping (not independent)
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28-year RI ratio slopes in the bias-corrected HiFLOR control
simulations are compared to the ADT-HURSAT and IBTrACS RI
ratio slopes between 1982 and 2009. Supplementary Figure 4
shows how the probability distribution of RI ratio slopes changes
when selecting 28-year segments from HiFLOR 1860CTL that are
independent and not independent. The plotted bins show the
independent sample has a slightly broader distribution but in
general, the probabilities of the bins are similar to those in the
overlapping bins.

Figure 5 contains a box and whisker plot that shows the
distribution of RI ratio slopes for the QDM-corrected 1860CTL.
The observed slopes during 1982–2009 are overlaid on each plot.
Supplementary Figure 5 is similar to Fig. 5 but shows the box and
whisker plots for all of the HiFLOR control simulations.
Supplementary Figure 6 portrays the corresponding cumulative
distribution functions (CDF) of the RI ratio slopes for all of the
control simulations as well as the observed RI ratio slopes in
ADT-HURSAT and IBTrACS. In the Atlantic basin, the slope of
the RI ratio for ADT-HURSAT and IBTrACS are both above the
99th percentile of the slopes of any of the bias-corrected HiFLOR
control simulations. Therefore, the large positive slope of RI ratio
in both observational datasets is outside HiFLOR’s estimate of
expected internal climate variability, which suggests the model’s
depiction of climate oscillations like the AMO cannot explain the
observed trend.

For the global data, IBTrACS data indicates a trend that is well
above the bounds of the observed natural variability of RI ratio in
any HiFLOR control simulation, but the noted temporal and
spatial heterogeneities leads us to question the validity of this
result. The slope of RI ratio for ADT-HURSAT is approximately
the 80th percentile of the HiFLOR 1860CTL, indicating the
observed trend is not significant compared to modelled climate
variability. Importantly, ADT-HURSAT observed data also yields
an RI slope that is still relatively unusual compared to the
HiFLOR preindustrial natural variability. This emerging trend is
consistent with an increasing trend in the global intensity of
TCs12. In the near future, ADT-HURSAT will be extended to
2016, and it is therefore vital for future analysis to determine
whether the global trend also becomes significant.

In order to explore whether the observed changes between
1982 and 2009 could be attributable to anthropogenic forcing, we
compare RI ratio in the three climate change simulations to the
preindustrial 1860CTL. Figure 6 shows the percent difference in
RI ratio between 1860CTL and the HiFLOR simulations with
stronger anthropogenic forcing (1940CTL, 1990CTL, and
2015CTL). The analysis only involves HiFLOR simulations so
bias corrections and random error are not applied to the data
(Methods). Grid boxes that are not statistically significant are
demarcated with a white “X”. The prevalence of red boxes
throughout the maps conveys that a larger percentage of TCs are
undergoing RI in 1940CTL, 1990CTL, and 2015CTL than in
1860CTL. There are no significant blue grid boxes in the
1990CTL and 2015CTL maps, and the number of gridboxes that
record significant increases in RI ratio is 41 (9.7% of all shaded
gridboxes) in 1940CTL, 156 (34.7% of all shaded gridboxes) in
1990 CTL, and 164 (38.2% of all shaded gridboxes) in 2015CTL.
Historical radiative forcing changes applied to HiFLOR clearly
lead to more frequent large intensification rates, but the available
simulations do not allow us to strictly attribute the identified
growth in RI during the period 1982–2009 to anthropogenic
forcing. An ensemble of experiments that simulate anthropo-
genically forced climate change during this specific period,
including changes in RI ratio, would be better suited for more
comprehensive attribution analysis. Thus, for now, we can only
conclude that anthropogenic forcing significantly increases
extreme TC intensification rates in the HiFLOR model compared
to preindustrial (1860CTL) conditions.

In the two most reliable long-term observational records
available for TC intensity changes, the proportion of 24-h TC
intensification rates greater than 30 knots significantly increases
in the Atlantic basin between 1982 and 2009. Results averaged
over all basins show a significant increase in TC intensification
rates in IBTrACS but not in ADT-HURSAT. By itself, a 28-year
upward trend in a TC intensification metric does not necessarily
reflect the effects of anthropogenic climate forcing because of the
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and whisker plot represents the distribution of slopes of RI ratio in the
QDM-corrected 1860 HiFLOR control simulation. a Global and b Atlantic
basin results are plotted. Each slope is calculated by applying least squares
regression analysis to annual RI ratio values in overlapping 28-year periods.
Thus, the number of slopes for a control simulation is the number of
available years subtracted by 28 (i.e., 1860CTL has 1422 slopes). The red
line in each box indicates the median of the slopes. The box is bounded by
the 25th and 75th percentiles of the data, and the whiskers bracket
approximately 99% of the data. Red plus signs indicate outliers whose
values are outside of whiskers’ range. IBTrACS and ADT-HURSAT trends in
annual mean RI ratio between 1982 and 2009 are respectively represented
by blue and green dotted lines and the corresponding p values are listed
below each line
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intrinsic natural variability of the climate system. Here, we use
bias-corrected TC intensification rates simulated by HiFLOR to
demonstrate that natural variability cannot explain the magnitude
of the observed upward trend in the Atlantic basin. These
conclusions are possible because HiFLOR is a unique climate
model that can successfully simulate the most intense TCs and
highest intensification rates in multicentury simulations.

This study is limited by the ability of a climate model to
accurately represent natural variability as well as the uncertainty
around the trends in relatively short observational records.
However, this study represents a crucial first step in quantifying
the precise roles of stochastic processes, anthropogenic warming,
and natural variability when assessing changes in TC intensifica-
tion rates. Further analysis with additional high-resolution

1940CTL

1990CTL

2015CTL

300° W 270° W 240° W 210° W 180° W 150° W 120° W 90° W 60° W 30° W

200

150

100

50

0

–50

–100

–150

–200

P
er

ce
nt

 d
iff

er
en

ce
 in

 R
I c

as
es

/to
ta

l c
as

es

200

150

100

50

0

–50

–100

–150

–200

P
er

ce
nt

 d
iff

er
en

ce
 in

 R
I c

as
es

/to
ta

l c
as

es

200

150

100

50

0

–50

–100

–150

–200

P
er

ce
nt

 d
iff

er
en

ce
 in

 R
I c

as
es

/to
ta

l c
as

es

40° N

20° N

40° S

20° S

0°

40° N

20° N

40° S

20° S

0°

40° N

20° N

40° S

20° S

0°

300° W 270° W 240° W 210° W 180° W 150° W 120° W 90° W 60° W 30° W

300° W 270° W 240° W 210° W 180° W 150° W 120° W 90° W 60° W 30° W

a

b

c

Fig. 6 Anthropogenic forcing’s effects on RI ratio in HiFLOR. a–c Simulated changes in RI ratio by the 1940CTL (a), 1990CTL (b), and 2015CTL (c) relative
to the 1860CTL. Percent difference in RI ratio between HiFLOR 1860CTL and each climate change simulation is plotted in each 5° × 5° grid box. Data is only
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climate models and a longer and more reliable observational
record is required to confirm these conclusions. Regardless, these
trends provide another example of the potentially serious
repercussions of anthropogenic warming for TCs.

Methods
Observed data. We used the International Best Track Archive for Climate
Stewardship (IBTrACS)17, v03r09, and the Advance Dvorak Technique-Hurricane
Satellite-B112 (ADT-HURSAT) for the period 1982–2009. For our IBTrACS ana-
lysis, we only consider best-track data from the National Hurricane Center for the
Atlantic and east Pacific and the Joint Typhoon Warning Center for the remainder
of the globe17. One of the benefits of only using data from these U.S. agencies is
they follow the same definition of maximum winds: the highest 1-min average at
10 m height over a smooth surface31. Best-track data start as operational estimates
of the intensity and track of a TC and are refined at the end of a TC’s lifetime with
a combination of in situ (e.g., dropsondes, scatterometers, and buoys), radar, and
satellite measurements. Best-track intensity and position estimates are available
every 6 h at the four synoptic times (0000, 0600, 1200, and 1800 UTC) and are
recorded to the nearest 5 knots (1 kt= 0.5144 m s−1) and 0.1° latitude/longitude32.

The creation of ADT-HURSAT consists of four main steps. Geostationary
satellite imagery is first analyzed from International Satellite Cloud Climatology
Project (ISCCP)-B1 data33–35. Then, the data are centered on IBTrACS TCs and
subsampled to be both spatially and temporally homogeneous. Finally, a simplified
version of the advanced Dvorak technique20 is used to evaluate the data and
determine a maximum TC wind speed. ADT-HURSAT data are produced every 3
h based on satellite data that has been uniformly subsampled to a horizontal
resolution of 8 km, and wind speeds are recorded to the nearest tenth of a Dvorak
“T-number” (depending on the current intensity, between 1 and 3 knots).

Although ADT-HURSAT and IBTrACS represent the two most reliable multi-
decadal observational datasets for TC intensification trend analysis, they both have
limitations. In IBTrACS, Atlantic and East Pacific in situ observations have rapidly
improved in the last 30 years, while other basins were rarely able to obtain aircraft
reconnaissance. In fact, the west Pacific was the only other basin that had access to
aircraft reconnaissance but these observations stopped in 1987. As a result, the
number of measurements available in different basins varies considerably, leading
to temporal and spatial inconsistencies in IBTrACS observational quality. Better
intensity estimates at the end of the historical record potentially causes heightened
detection of the larger intensity changes. Additionally, best-track estimates are also
susceptible to human error because they are assembled at operational centers.

Compared to IBTrACS, ADT-HURSAT employs reduced-resolution satellite
imagery, both in space and time. The omission of in situ measurements to
accompany the coarsened satellite imagery is especially problematic for ADT-
HURSAT identifying “scene type” changes when an eye is forming. As a result,
there is a well-documented unphysical plateau at the eye formation stage of TC
development in intensity observations from ADT-HURSAT. Low intensity changes
are present for long periods of time and then the ADT-HURSAT is forced “to catch
up” with higher intensity changes once it finally detects an eye. Thus, peak TC
intensities (and changes) may not be fully resolved by ADT-HURSAT, especially in
the cases of a transient, small eye. However, these deficiencies remain consistent
throughout the time series, which suggests that there is a low likelihood of a
systematic bias in ADT-HURSAT trends. It is also possible that larger eyes and a
longer mean duration of the “plateau” period for TCs in the Atlantic basin could
lead to minimal effects of these deficiencies.

Criteria for inclusion in sample. For consistency, intensity change values in
HiFLOR and the observational datasets are rounded to the nearest five knots. We
only consider TCs that are active for at least 72 h and exceed wind speeds of 34
knots for at least 36 h. We restrict our analysis sample to only consider cases where
the TC center is located over the ocean, the starting and ending TC position are
below 40° of latitude, and the TC intensity stays above 34 knots. The warm core
criteria discussed in Murakami et al.24 is also applied to the HiFLOR data before
analysis.

Control experiments. Four HiFLOR control simulations introduced in Murakami
et al.27 were used here to represent natural climate variability and provide the
framework for exploring anthropogenic effects. Control simulations were created
using anthropogenic forcing fixed at 1860 (1860CTL), 1940 (1940CTL), 1990
(1990CTL), and 2015 (2015CTL) levels. Owing to limited computational resources,
1860CTL, 1940CTL, 1990CTL, and 2015CTL were run for different lengths: 1500,
200, 300, and 200 years, respectively. The first 50 years of all simulations were
disregarded to mitigate effects of model drift. Basic conclusions remained similar
even when we using the smallest sample size (150 years) for all the control
simulations. The fixed forcing agents for the control simulations were atmospheric
CO2, CH4, N2O, halons, tropospheric and stratospheric O3, anthropogenic tro-
pospheric sulfates, black and organic carbon, and solar irradiance.

Uncertainty quantification. ADT-HURSAT and IBTrACS respectively provide
intensity estimates to the nearest 1–3 and 5 knots. We use Monte Carlo techniques

to create random noise before analyzing the discretized data. Random noise pre-
vents multiple data points from having the same value and provides an estimate of
the typical error associated with measuring TC intensity. 1000 subsamples were
produced by adding random noise from a uniform distribution on the interval
±2 ´

ffiffiffiffiffi

50
p

knots to each intensity change value. The magnitude of this random
noise is derived by adding 5 knots of error in quadrature (propagation of errors
stemming from the intensity change calculation), which is a conservative estimate
for the typical error associated with each TC intensity observation35,36. To calculate
the slope of any intensification metric for ADT-HURSAT and IBTrACS, we use the
slope of the mean of the 1000 subsamples for that particular metric. For example,
quantile regression involved the calculation of every 5th percentile in each of the
1000 subsamples for each year. One-thousand slopes of each percentile were cal-
culated and the mean of the slopes was considered the best estimate of the
1982–2009 slope of the quantile. The 5th and 95th percentiles of the 1000 slopes
were considered the uncertainty bounds for the quantile.

For the creation of Fig. 6, random error is not added to the data because we only
compare spatial differences in RI ratio among the different HiFLOR simulations.
Statistical significance is computed using a binomial proportion test with p values
below 0.05 considered significant37. Data is only plotted in a grid box if there is at
least one-fourth of a TC day per year in the two HiFLOR simulations used to
calculate the percent difference.

Quantile mapping. In this work, two univariate bias correction methods were
tested. We primarily focus on results produced using an additive version of QDM29

by making use of R programming language code contained in the CRAN MBC
package version 0.10–438. As reported in Appendix A of Cannon et al.29, the
additive version of QDM is functionally very similar to the equidistant CDF
matching algorithm of Li et al.39. The formulation of QDM aims to preserve
relative changes in model-simulated climate variable quantiles. In other words,
with respect to the quantiles, QDM guards against distorting the underlying cli-
mate model’s climate sensitivity. For comparison purposes, we also used a simpler
and more standard quantile mapping approach called BCQM. The more com-
monly used standard BCQM method develops transfer equations solely from
comparisons of observations and model data sets drawn from a common historical
(baseline) period, which can yield results in which the relative trends in bias
corrected output differ from those of the raw GCM results. Meanwhile, the QDM
method also incorporates adjustments accounting for differences between the
modeled distributions of the historical period and future projections. As is gen-
erally the case for statistical bias correction methods, QDM and BCQM both
assume that the GCM biases present in the historical period are consistent with
biases in the GCM’s future projections (i.e., a stationarity assumption).

For both of these mappings, IBTrACS serves as the training dataset that
1990CTL data is nudged to because its observations have lower errors than ADT-
HURSAT. ADT-HURSAT was also tested as the target distribution for the bias
correction, but these results are excluded since the basic conclusions of the results
remain the same. After establishing the transfer function for the bias correction
using 1990CTL, the other control simulations are also bias-corrected.

Code availability. The code that supports the findings of this study is available
from the corresponding author on request.

Data availability
The source code of the climate model can be found at https://www.gfdl.noaa.gov/
cm2-5-and-flor. The data that support the findings of this study are available from
the corresponding author on request.
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